Luthviyah Choirotul Muhimmah, Yu-Hung Peng, Ching-Hwa Ho
{"title":"具有直接跃迁边缘的全系列多层GaTe1−xSx(0≤x≤1)的光发射、结构相演化和光催化行为","authors":"Luthviyah Choirotul Muhimmah, Yu-Hung Peng, Ching-Hwa Ho","doi":"10.1016/j.mtadv.2023.100450","DOIUrl":null,"url":null,"abstract":"<p>The crystal structures and optical properties of full-series multilayered GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 1) are examined. The results reveal that the monoclinic (M) phase dominates for 0 ≤ x ≤ 0.4, and the hexagonal (H) phase dominates for 0.425 ≤ x ≤ 1. The full-series multilayer GaTe<sub>1−x</sub>S<sub>x</sub> exhibited strong photoluminescence. The emission range of M-GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 0.4) layers displays 1.65–1.77 eV (700–750 nm) and that of the H-GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 1) layers is 1.588–2.5 eV (496–780 nm). Micro-time-resolved photoluminescence (μTRPL) revealed that the M-phase had a shorter PL recombination lifetime than H-phase because the surface effect. The multilayer GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 1) exhibited superior light emission and absorption capabilities for application in light-emitting and photocatalytic devices. The GaTe<sub>0.5</sub>S<sub>0.5</sub> nanosheet photocatalyst demonstrated the best photocatalytic performance because its abundant surface state and mixed phases to enhance the photo-degradation ability.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"40 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light emission, structure-phase evolution, and photocatalytic behavior in full-series multilayered GaTe1−xSx (0 ≤ x ≤ 1) with direct-transition edge\",\"authors\":\"Luthviyah Choirotul Muhimmah, Yu-Hung Peng, Ching-Hwa Ho\",\"doi\":\"10.1016/j.mtadv.2023.100450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The crystal structures and optical properties of full-series multilayered GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 1) are examined. The results reveal that the monoclinic (M) phase dominates for 0 ≤ x ≤ 0.4, and the hexagonal (H) phase dominates for 0.425 ≤ x ≤ 1. The full-series multilayer GaTe<sub>1−x</sub>S<sub>x</sub> exhibited strong photoluminescence. The emission range of M-GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 0.4) layers displays 1.65–1.77 eV (700–750 nm) and that of the H-GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 1) layers is 1.588–2.5 eV (496–780 nm). Micro-time-resolved photoluminescence (μTRPL) revealed that the M-phase had a shorter PL recombination lifetime than H-phase because the surface effect. The multilayer GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 1) exhibited superior light emission and absorption capabilities for application in light-emitting and photocatalytic devices. The GaTe<sub>0.5</sub>S<sub>0.5</sub> nanosheet photocatalyst demonstrated the best photocatalytic performance because its abundant surface state and mixed phases to enhance the photo-degradation ability.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2023.100450\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100450","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
研究了全系列多层GaTe1−xSx(0≤x≤1)的晶体结构和光学性能。结果表明:在0≤x≤0.4时,单斜相(M)占主导地位;在0.425≤x≤1时,六方相(H)占主导地位;全系列多层GaTe1−xSx表现出较强的光致发光。M-GaTe1−xSx(0≤x≤0.4)层的发射范围为1.65 ~ 1.77 eV (700 ~ 750nm), H-GaTe1−xSx(0≤x≤1)层的发射范围为1.588 ~ 2.5 eV (496 ~ 780nm)。微时间分辨光致发光(μTRPL)结果表明,由于表面效应,m相比h相具有更短的PL复合寿命。多层GaTe1−xSx(0≤x≤1)表现出优异的光发射和吸收能力,可用于发光和光催化器件。GaTe0.5S0.5纳米片光催化剂表现出最好的光催化性能,因为其丰富的表面态和混合相增强了光降解能力。
Light emission, structure-phase evolution, and photocatalytic behavior in full-series multilayered GaTe1−xSx (0 ≤ x ≤ 1) with direct-transition edge
The crystal structures and optical properties of full-series multilayered GaTe1−xSx (0 ≤ x ≤ 1) are examined. The results reveal that the monoclinic (M) phase dominates for 0 ≤ x ≤ 0.4, and the hexagonal (H) phase dominates for 0.425 ≤ x ≤ 1. The full-series multilayer GaTe1−xSx exhibited strong photoluminescence. The emission range of M-GaTe1−xSx (0 ≤ x ≤ 0.4) layers displays 1.65–1.77 eV (700–750 nm) and that of the H-GaTe1−xSx (0 ≤ x ≤ 1) layers is 1.588–2.5 eV (496–780 nm). Micro-time-resolved photoluminescence (μTRPL) revealed that the M-phase had a shorter PL recombination lifetime than H-phase because the surface effect. The multilayer GaTe1−xSx (0 ≤ x ≤ 1) exhibited superior light emission and absorption capabilities for application in light-emitting and photocatalytic devices. The GaTe0.5S0.5 nanosheet photocatalyst demonstrated the best photocatalytic performance because its abundant surface state and mixed phases to enhance the photo-degradation ability.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.