TIG电弧熔炼和高频超声冲击焊接制备FeCrNiCoMnSi0.1高熵合金涂层的组织、力学和腐蚀性能

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Advances Pub Date : 2023-11-15 DOI:10.1016/j.mtadv.2023.100443
Yiliang He, Mengqi Cong, Weining Lei, Yuhong Ding, Tianle Xv, Zilong Han
{"title":"TIG电弧熔炼和高频超声冲击焊接制备FeCrNiCoMnSi0.1高熵合金涂层的组织、力学和腐蚀性能","authors":"Yiliang He, Mengqi Cong, Weining Lei, Yuhong Ding, Tianle Xv, Zilong Han","doi":"10.1016/j.mtadv.2023.100443","DOIUrl":null,"url":null,"abstract":"<p>With the increase in studies on high-entropy alloys and their impressive structural properties, the preparation processes and applications of high-entropy alloys have become a popular research topic in metallic materials. In this paper, the preparation of FeCrNiCoMnSi<sub>0.1</sub> high-entropy alloy coatings was carried out by the follow-welding high-frequency power ultrasonic impact composite TIG arc melting process, the effects of different power ultrasonic impacts on the microstructure and properties of the coatings are investigated. The results showed that the average grain size is reduced by 74 % (from 278 μm to 72 μm), the average microhardness is increased by 41 % from 568 HV<sub>1</sub> to 807 HV<sub>1</sub>, the abrasion resistance is improved by 68 % under the effect of ultrasonic impact. The ultrasonic impact treatment process can effectively refine the microstructure of the coatings and improve the strength of grain boundaries. The corrosion resistance of the coating in 3.5 wt% NaCl solution is enhanced by 65 %, the corrosion type was changed from intergranular corrosion to uniform corrosion. This is mainly caused by the ultrasonic impact treatment which suppresses the elemental segregation of Cr and Mn and improves the grain boundary strength.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"88 8","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure, mechanical and corrosion properties of FeCrNiCoMnSi0.1 high-entropy alloy coating via TIG arc melting technology and high-frequency ultrasonic impact with welding\",\"authors\":\"Yiliang He, Mengqi Cong, Weining Lei, Yuhong Ding, Tianle Xv, Zilong Han\",\"doi\":\"10.1016/j.mtadv.2023.100443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the increase in studies on high-entropy alloys and their impressive structural properties, the preparation processes and applications of high-entropy alloys have become a popular research topic in metallic materials. In this paper, the preparation of FeCrNiCoMnSi<sub>0.1</sub> high-entropy alloy coatings was carried out by the follow-welding high-frequency power ultrasonic impact composite TIG arc melting process, the effects of different power ultrasonic impacts on the microstructure and properties of the coatings are investigated. The results showed that the average grain size is reduced by 74 % (from 278 μm to 72 μm), the average microhardness is increased by 41 % from 568 HV<sub>1</sub> to 807 HV<sub>1</sub>, the abrasion resistance is improved by 68 % under the effect of ultrasonic impact. The ultrasonic impact treatment process can effectively refine the microstructure of the coatings and improve the strength of grain boundaries. The corrosion resistance of the coating in 3.5 wt% NaCl solution is enhanced by 65 %, the corrosion type was changed from intergranular corrosion to uniform corrosion. This is mainly caused by the ultrasonic impact treatment which suppresses the elemental segregation of Cr and Mn and improves the grain boundary strength.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"88 8\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2023.100443\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100443","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着对高熵合金及其优异结构性能研究的增加,高熵合金的制备工艺及其应用已成为金属材料领域的研究热点。本文采用后续焊接高频功率超声冲击复合TIG弧熔工艺制备了FeCrNiCoMnSi0.1高熵合金涂层,研究了不同功率超声冲击对涂层组织和性能的影响。结果表明:在超声冲击作用下,合金的平均晶粒尺寸从278 μm减小到72 μm,平均显微硬度从568 HV1提高到807 HV1,提高了41%,耐磨性提高了68%。超声冲击处理工艺能有效细化涂层组织,提高晶界强度。涂层在3.5 wt% NaCl溶液中的耐蚀性提高65%,腐蚀类型由晶间腐蚀转变为均匀腐蚀。这主要是由于超声冲击处理抑制了Cr和Mn的元素偏析,提高了晶界强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure, mechanical and corrosion properties of FeCrNiCoMnSi0.1 high-entropy alloy coating via TIG arc melting technology and high-frequency ultrasonic impact with welding

With the increase in studies on high-entropy alloys and their impressive structural properties, the preparation processes and applications of high-entropy alloys have become a popular research topic in metallic materials. In this paper, the preparation of FeCrNiCoMnSi0.1 high-entropy alloy coatings was carried out by the follow-welding high-frequency power ultrasonic impact composite TIG arc melting process, the effects of different power ultrasonic impacts on the microstructure and properties of the coatings are investigated. The results showed that the average grain size is reduced by 74 % (from 278 μm to 72 μm), the average microhardness is increased by 41 % from 568 HV1 to 807 HV1, the abrasion resistance is improved by 68 % under the effect of ultrasonic impact. The ultrasonic impact treatment process can effectively refine the microstructure of the coatings and improve the strength of grain boundaries. The corrosion resistance of the coating in 3.5 wt% NaCl solution is enhanced by 65 %, the corrosion type was changed from intergranular corrosion to uniform corrosion. This is mainly caused by the ultrasonic impact treatment which suppresses the elemental segregation of Cr and Mn and improves the grain boundary strength.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Advances
Materials Today Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.30
自引率
2.00%
发文量
116
审稿时长
32 days
期刊介绍: Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.
期刊最新文献
Not only a matter of disorder in I-WP minimal surface-based photonic networks: Diffusive structural color in Sternotomis amabilis longhorn beetles Magnetic bilayer qubits: A bipartite quantum system Unraveling the role of relaxation and rejuvenation on the structure and deformation behavior of the Zr-based bulk metallic glass Vit105 Acoustic tweezer-driven assembly and anti-cancer property of microporous magnesium gallate Nanostructured proton-exchange membranes from self-cross-linking perfluoroalkyl-free block-co-polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1