{"title":"助催化剂修饰的In2S3光催化剂用于C-N偶联胺与H2演化","authors":"Yu Chen, Chang-Long Tan, Jing-Yu Li, Ming-Yu Qi, Zi-Rong Tang and Yi-Jun Xu","doi":"10.1039/D3IM00116D","DOIUrl":null,"url":null,"abstract":"<p>Photocatalytic hydrogen (H<small><sub>2</sub></small>) production coupled with selective oxidation of organic compounds into high-value-added organic intermediates has expansive prospects in the utilization and transformation of solar energy, which meets the development requirements of green chemistry. In this work, high-efficiency hole cocatalyst PdS-decorated In<small><sub>2</sub></small>S<small><sub>3</sub></small> flower-like microspheres are fabricated for the effective visible-light-driven C–N coupling of amines to imines coupled with H<small><sub>2</sub></small> evolution. Owing to the establishment of the internal electric field, which further boosts the transfer of photoexcited holes to PdS, PdS–In<small><sub>2</sub></small>S<small><sub>3</sub></small> exhibits distinctly enhanced photocatalytic redox performance, which is 39.8 times higher for H<small><sub>2</sub></small> and 14.3 times higher for <em>N</em>-benzylidenebenzylamine than that of the blank In<small><sub>2</sub></small>S<small><sub>3</sub></small>, along with high selectivity and stability. Furthermore, the practicability of dehydrogenation coupling of various aromatic amines to the corresponding C–N coupling products on PdS–In<small><sub>2</sub></small>S<small><sub>3</sub></small> has been demonstrated and a plausible reaction mechanism has been proposed. This work is anticipated to stimulate further interest in establishing an innovative photoredox platform for selective organic synthesis coupled with H<small><sub>2</sub></small> evolution in a green and sustainable way.</p><p>Keywords: In<small><sub>2</sub></small>S<small><sub>3</sub></small>; Photoredox dual reaction; Hydrogen evolution; Visible light; Hole cocatalyst.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 289-299"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00116d?page=search","citationCount":"0","resultStr":"{\"title\":\"Cocatalyst-modified In2S3 photocatalysts for C–N coupling of amines integrated with H2 evolution†\",\"authors\":\"Yu Chen, Chang-Long Tan, Jing-Yu Li, Ming-Yu Qi, Zi-Rong Tang and Yi-Jun Xu\",\"doi\":\"10.1039/D3IM00116D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photocatalytic hydrogen (H<small><sub>2</sub></small>) production coupled with selective oxidation of organic compounds into high-value-added organic intermediates has expansive prospects in the utilization and transformation of solar energy, which meets the development requirements of green chemistry. In this work, high-efficiency hole cocatalyst PdS-decorated In<small><sub>2</sub></small>S<small><sub>3</sub></small> flower-like microspheres are fabricated for the effective visible-light-driven C–N coupling of amines to imines coupled with H<small><sub>2</sub></small> evolution. Owing to the establishment of the internal electric field, which further boosts the transfer of photoexcited holes to PdS, PdS–In<small><sub>2</sub></small>S<small><sub>3</sub></small> exhibits distinctly enhanced photocatalytic redox performance, which is 39.8 times higher for H<small><sub>2</sub></small> and 14.3 times higher for <em>N</em>-benzylidenebenzylamine than that of the blank In<small><sub>2</sub></small>S<small><sub>3</sub></small>, along with high selectivity and stability. Furthermore, the practicability of dehydrogenation coupling of various aromatic amines to the corresponding C–N coupling products on PdS–In<small><sub>2</sub></small>S<small><sub>3</sub></small> has been demonstrated and a plausible reaction mechanism has been proposed. This work is anticipated to stimulate further interest in establishing an innovative photoredox platform for selective organic synthesis coupled with H<small><sub>2</sub></small> evolution in a green and sustainable way.</p><p>Keywords: In<small><sub>2</sub></small>S<small><sub>3</sub></small>; Photoredox dual reaction; Hydrogen evolution; Visible light; Hole cocatalyst.</p>\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":\" 2\",\"pages\":\" 289-299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00116d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00116d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00116d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cocatalyst-modified In2S3 photocatalysts for C–N coupling of amines integrated with H2 evolution†
Photocatalytic hydrogen (H2) production coupled with selective oxidation of organic compounds into high-value-added organic intermediates has expansive prospects in the utilization and transformation of solar energy, which meets the development requirements of green chemistry. In this work, high-efficiency hole cocatalyst PdS-decorated In2S3 flower-like microspheres are fabricated for the effective visible-light-driven C–N coupling of amines to imines coupled with H2 evolution. Owing to the establishment of the internal electric field, which further boosts the transfer of photoexcited holes to PdS, PdS–In2S3 exhibits distinctly enhanced photocatalytic redox performance, which is 39.8 times higher for H2 and 14.3 times higher for N-benzylidenebenzylamine than that of the blank In2S3, along with high selectivity and stability. Furthermore, the practicability of dehydrogenation coupling of various aromatic amines to the corresponding C–N coupling products on PdS–In2S3 has been demonstrated and a plausible reaction mechanism has been proposed. This work is anticipated to stimulate further interest in establishing an innovative photoredox platform for selective organic synthesis coupled with H2 evolution in a green and sustainable way.
期刊介绍:
Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated.
The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale.
Industrial Chemistry & Materials publishes:
● Communications
● Full papers
● Minireviews
● Reviews
● Perspectives
● Comments