122型铁基超导体的A型磁性半导体(Sr, Na)(Zn, Mn)2Sb2等构

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Advances in Condensed Matter Physics Pub Date : 2022-01-10 DOI:10.1155/2022/4291923
Yilun Gu, Rufei Zhang, Haojie Zhang, Licheng Fu, Guoxiang Zhi, Jinou Dong, Xueqin Zhao, Lingfeng Xie, Fanlong Ning
{"title":"122型铁基超导体的A型磁性半导体(Sr, Na)(Zn, Mn)2Sb2等构","authors":"Yilun Gu, Rufei Zhang, Haojie Zhang, Licheng Fu, Guoxiang Zhi, Jinou Dong, Xueqin Zhao, Lingfeng Xie, Fanlong Ning","doi":"10.1155/2022/4291923","DOIUrl":null,"url":null,"abstract":"A new diluted magnetic semiconductor (Sr, Na)(Zn, Mn)<sub>2</sub>Sb<sub>2</sub> has been successfully synthesized by doping Na and Mn into the parent compound <span><svg height=\"12.4894pt\" style=\"vertical-align:-3.181499pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.3079 48.943 12.4894\" width=\"48.943pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g190-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.084,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.907,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,18.928,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,26.137,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.083,0)\"><use xlink:href=\"#g190-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.245,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,43.897,3.132)\"><use xlink:href=\"#g50-51\"></use></g></svg>,</span> which has a <span><svg height=\"12.4894pt\" style=\"vertical-align:-3.181499pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.3079 46.4768 12.4894\" width=\"46.4768pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g190-68\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.762,0)\"><use xlink:href=\"#g190-98\"></use></g><g transform=\"matrix(.013,0,0,-0.013,14.47,0)\"><use xlink:href=\"#g190-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,23.492,0)\"><use xlink:href=\"#g190-109\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,26.88,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.827,0)\"><use xlink:href=\"#g190-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.911,0)\"><use xlink:href=\"#g190-106\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,41.431,3.132)\"><use xlink:href=\"#g50-51\"></use></g></svg>-</span>type crystal structure (space group <span><svg height=\"11.8174pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.611 30.973 11.8174\" width=\"30.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><rect height=\"0.65243\" width=\"6.26339\" x=\"8.02612\" y=\"-10.9087\"></rect><g transform=\"matrix(.013,0,0,-0.013,8.026,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,14.29,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,24.547,0)\"></path></g></svg>,</span> No. 164, <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 21.1472 9.49473\" width=\"21.1472pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.708,0)\"><use xlink:href=\"#g113-81\"></use></g><g transform=\"matrix(.013,0,0,-0.013,14.734,0)\"></path></g></svg>)</span> isostructural to the 122-type iron-based superconductor <span><svg height=\"11.9348pt\" style=\"vertical-align:-3.18146pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.75334 50.3131 11.9348\" width=\"50.3131pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g190-68\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.762,0)\"><use xlink:href=\"#g190-98\"></use></g><g transform=\"matrix(.013,0,0,-0.013,14.47,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,21.098,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,26.724,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.67,0)\"><use xlink:href=\"#g190-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,40.444,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,45.267,3.132)\"><use xlink:href=\"#g50-51\"></use></g></svg>.</span> No magnetic ordering has been observed when only spins are doped by (Zn, Mn) substitution. Only with carriers codoped by (Sr, Na) substitution, a ferromagnetic ordering occurs below the maximum Curie temperature <svg height=\"12.2532pt\" style=\"vertical-align:-3.29108pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 13.9844 12.2532\" width=\"13.9844pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.176,3.132)\"></path></g></svg>∼9.5 K. Comparing with other <span><svg height=\"12.4894pt\" style=\"vertical-align:-3.181499pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.3079 46.4768 12.4894\" width=\"46.4768pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g190-68\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.762,0)\"><use xlink:href=\"#g190-98\"></use></g><g transform=\"matrix(.013,0,0,-0.013,14.47,0)\"><use xlink:href=\"#g190-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,23.492,0)\"><use xlink:href=\"#g190-109\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,26.88,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.827,0)\"><use xlink:href=\"#g190-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.911,0)\"><use xlink:href=\"#g190-106\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,41.431,3.132)\"><use xlink:href=\"#g50-51\"></use></g></svg>-</span>type diluted magnetic semiconductors, we will show that negative chemical pressure suppresses the Curie temperature.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"1189 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A -Type Magnetic Semiconductor (Sr, Na)(Zn, Mn)2Sb2 Isostructural to 122-Type Iron-Based Superconductors\",\"authors\":\"Yilun Gu, Rufei Zhang, Haojie Zhang, Licheng Fu, Guoxiang Zhi, Jinou Dong, Xueqin Zhao, Lingfeng Xie, Fanlong Ning\",\"doi\":\"10.1155/2022/4291923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new diluted magnetic semiconductor (Sr, Na)(Zn, Mn)<sub>2</sub>Sb<sub>2</sub> has been successfully synthesized by doping Na and Mn into the parent compound <span><svg height=\\\"12.4894pt\\\" style=\\\"vertical-align:-3.181499pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.3079 48.943 12.4894\\\" width=\\\"48.943pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g190-84\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,6.084,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,10.907,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,18.928,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,26.137,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,31.083,0)\\\"><use xlink:href=\\\"#g190-84\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.245,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,43.897,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g></svg>,</span> which has a <span><svg height=\\\"12.4894pt\\\" style=\\\"vertical-align:-3.181499pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.3079 46.4768 12.4894\\\" width=\\\"46.4768pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g190-68\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,8.762,0)\\\"><use xlink:href=\\\"#g190-98\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,14.47,0)\\\"><use xlink:href=\\\"#g190-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,23.492,0)\\\"><use xlink:href=\\\"#g190-109\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,26.88,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,31.827,0)\\\"><use xlink:href=\\\"#g190-84\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.911,0)\\\"><use xlink:href=\\\"#g190-106\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,41.431,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g></svg>-</span>type crystal structure (space group <span><svg height=\\\"11.8174pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.611 30.973 11.8174\\\" width=\\\"30.973pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><rect height=\\\"0.65243\\\" width=\\\"6.26339\\\" x=\\\"8.02612\\\" y=\\\"-10.9087\\\"></rect><g transform=\\\"matrix(.013,0,0,-0.013,8.026,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,14.29,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,24.547,0)\\\"></path></g></svg>,</span> No. 164, <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 21.1472 9.49473\\\" width=\\\"21.1472pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,6.708,0)\\\"><use xlink:href=\\\"#g113-81\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,14.734,0)\\\"></path></g></svg>)</span> isostructural to the 122-type iron-based superconductor <span><svg height=\\\"11.9348pt\\\" style=\\\"vertical-align:-3.18146pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.75334 50.3131 11.9348\\\" width=\\\"50.3131pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g190-68\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,8.762,0)\\\"><use xlink:href=\\\"#g190-98\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,14.47,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,21.098,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,26.724,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,31.67,0)\\\"><use xlink:href=\\\"#g190-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,40.444,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,45.267,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g></svg>.</span> No magnetic ordering has been observed when only spins are doped by (Zn, Mn) substitution. Only with carriers codoped by (Sr, Na) substitution, a ferromagnetic ordering occurs below the maximum Curie temperature <svg height=\\\"12.2532pt\\\" style=\\\"vertical-align:-3.29108pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.96212 13.9844 12.2532\\\" width=\\\"13.9844pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.176,3.132)\\\"></path></g></svg>∼9.5 K. Comparing with other <span><svg height=\\\"12.4894pt\\\" style=\\\"vertical-align:-3.181499pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.3079 46.4768 12.4894\\\" width=\\\"46.4768pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g190-68\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,8.762,0)\\\"><use xlink:href=\\\"#g190-98\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,14.47,0)\\\"><use xlink:href=\\\"#g190-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,23.492,0)\\\"><use xlink:href=\\\"#g190-109\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,26.88,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,31.827,0)\\\"><use xlink:href=\\\"#g190-84\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.911,0)\\\"><use xlink:href=\\\"#g190-106\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,41.431,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g></svg>-</span>type diluted magnetic semiconductors, we will show that negative chemical pressure suppresses the Curie temperature.\",\"PeriodicalId\":7382,\"journal\":{\"name\":\"Advances in Condensed Matter Physics\",\"volume\":\"1189 \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4291923\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/4291923","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

通过在母体化合物中掺杂Na和Mn,成功合成了一种新型稀释磁性半导体(Sr, Na)(Zn, Mn)2Sb2,其晶体结构(空间群,164号)与122型铁基超导体具有相同的结构。当仅自旋掺杂(Zn, Mn)取代时,未观察到磁有序。只有在载流子共掺杂(Sr, Na)取代时,在最高居里温度~ 9.5 K以下才会出现铁磁有序。与其他类型的稀释磁性半导体相比,我们将证明负化学压力抑制居里温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A -Type Magnetic Semiconductor (Sr, Na)(Zn, Mn)2Sb2 Isostructural to 122-Type Iron-Based Superconductors
A new diluted magnetic semiconductor (Sr, Na)(Zn, Mn)2Sb2 has been successfully synthesized by doping Na and Mn into the parent compound , which has a -type crystal structure (space group , No. 164, ) isostructural to the 122-type iron-based superconductor . No magnetic ordering has been observed when only spins are doped by (Zn, Mn) substitution. Only with carriers codoped by (Sr, Na) substitution, a ferromagnetic ordering occurs below the maximum Curie temperature ∼9.5 K. Comparing with other -type diluted magnetic semiconductors, we will show that negative chemical pressure suppresses the Curie temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
期刊最新文献
The Effect of Pressure Variations on the Electronic Structure, Phonon, and Superconducting Properties of Yttrium Hydrogen Selenide Compound The Optimal Doping Ratio of Fe2O3 for Enhancing the Electrochemical Stability of Zeolitic Imidazolate Framework-8 for Energy Storage Devices Electron Transport Properties of Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1): Initiation of Transition Eu2+ ↔ Eu2.41+ in the Intermediate Valence State Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites A Canonical Transformation for the Anderson Lattice Hamiltonian with f–f Electron Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1