{"title":"掺镝用于白色固态照明的单相硅酸盐荧光粉(Ba1.3Ca0.7−xSiO4:xDy3+","authors":"Desta R. Golja, Francis B. Dejene, Jung Yong Kim","doi":"10.1155/2022/4317275","DOIUrl":null,"url":null,"abstract":"Single-phase phosphors have potential advantages such as simple processability, competitive cost, and other optical and optoelectronic properties. Hence, in this study, the silicate phosphors (Ba<sub>1.3</sub>Ca<sub>0.7−<i>x</i></sub>SiO<sub>4</sub>:<i>x</i>Dy<sup>3+</sup>) doped with Dy<sup>3+</sup> ions (<i>x</i> = 0.01–0.05) were synthesized and characterized in detail. X-ray diffraction patterns showed that all the silicate phosphors have a <i>τ</i>-phase hexagonal unit cell independent of doping. However, <i>d</i>-spacing was reduced for the doped samples, indicating that the interplanar interactions were enhanced. Resultantly, the doped phosphors exhibited relatively larger domains with connectivity than the host, although there were sometimes microscale pores. Photoluminescence spectra stipulated that the optimized doping concentration is <i>x</i> = 0.03 for the silicate Ba<sub>1.3</sub>Ca<sub>0.7-<i>x</i></sub>SiO<sub>4</sub>:<i>x</i>Dy<sup>3+</sup> phosphors. Finally, the CIE coordinates (0.30, 0.33) confirm that the Dy<sup>3+</sup>-doped silicate phosphors are well applicable to the white light-emitting diodes for solid-state lighting and display devices.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"1180 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Phase Silicate Phosphors (Ba1.3Ca0.7−xSiO4:xDy3+) Doped with Dysprosium for White Solid-State Lighting\",\"authors\":\"Desta R. Golja, Francis B. Dejene, Jung Yong Kim\",\"doi\":\"10.1155/2022/4317275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-phase phosphors have potential advantages such as simple processability, competitive cost, and other optical and optoelectronic properties. Hence, in this study, the silicate phosphors (Ba<sub>1.3</sub>Ca<sub>0.7−<i>x</i></sub>SiO<sub>4</sub>:<i>x</i>Dy<sup>3+</sup>) doped with Dy<sup>3+</sup> ions (<i>x</i> = 0.01–0.05) were synthesized and characterized in detail. X-ray diffraction patterns showed that all the silicate phosphors have a <i>τ</i>-phase hexagonal unit cell independent of doping. However, <i>d</i>-spacing was reduced for the doped samples, indicating that the interplanar interactions were enhanced. Resultantly, the doped phosphors exhibited relatively larger domains with connectivity than the host, although there were sometimes microscale pores. Photoluminescence spectra stipulated that the optimized doping concentration is <i>x</i> = 0.03 for the silicate Ba<sub>1.3</sub>Ca<sub>0.7-<i>x</i></sub>SiO<sub>4</sub>:<i>x</i>Dy<sup>3+</sup> phosphors. Finally, the CIE coordinates (0.30, 0.33) confirm that the Dy<sup>3+</sup>-doped silicate phosphors are well applicable to the white light-emitting diodes for solid-state lighting and display devices.\",\"PeriodicalId\":7382,\"journal\":{\"name\":\"Advances in Condensed Matter Physics\",\"volume\":\"1180 \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4317275\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/4317275","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Single-Phase Silicate Phosphors (Ba1.3Ca0.7−xSiO4:xDy3+) Doped with Dysprosium for White Solid-State Lighting
Single-phase phosphors have potential advantages such as simple processability, competitive cost, and other optical and optoelectronic properties. Hence, in this study, the silicate phosphors (Ba1.3Ca0.7−xSiO4:xDy3+) doped with Dy3+ ions (x = 0.01–0.05) were synthesized and characterized in detail. X-ray diffraction patterns showed that all the silicate phosphors have a τ-phase hexagonal unit cell independent of doping. However, d-spacing was reduced for the doped samples, indicating that the interplanar interactions were enhanced. Resultantly, the doped phosphors exhibited relatively larger domains with connectivity than the host, although there were sometimes microscale pores. Photoluminescence spectra stipulated that the optimized doping concentration is x = 0.03 for the silicate Ba1.3Ca0.7-xSiO4:xDy3+ phosphors. Finally, the CIE coordinates (0.30, 0.33) confirm that the Dy3+-doped silicate phosphors are well applicable to the white light-emitting diodes for solid-state lighting and display devices.
期刊介绍:
Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties.
Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.