{"title":"含盐添加剂沥青路面抗冰寿命模型建立与预测","authors":"Zhang, Yan, Deng, Yong, Shi, Xianming","doi":"10.1186/s43065-021-00047-w","DOIUrl":null,"url":null,"abstract":"This study established a systematic simulation framework to predict the anti-icing longevity of a thin overlay of asphalt pavement with salt-storage additive (APSSA). The water and chloride transport in the overlay when subjected to varying precipitation, temperature, thermal cracking, and fatigue cracking over time were modeled using a Finite Element Method based software. The simulation included two parts: water transport followed by chloride transport. Water transport that obeys the law of conservation of mass was modeled using the phase transport in porous media (phtr) interface of COMSOL, while chloride transport based on Fick’s second law was modeled with the transport of diluted species (tds) interface. The simulation results show that the anti-icing function of a 16-mm thick overlay was fully effective in 2 years and 5 years for the minimum pavement temperature above -3.4 °C and -2.4 °C, respectively. These two pavement temperatures are equivalent to 97.4-percentile and 96.3-percentile of historical hourly pavement temperature near Pullman, Washington. ","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"193 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Model development and prediction of anti-icing longevity of asphalt pavement with salt-storage additive\",\"authors\":\"Zhang, Yan, Deng, Yong, Shi, Xianming\",\"doi\":\"10.1186/s43065-021-00047-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study established a systematic simulation framework to predict the anti-icing longevity of a thin overlay of asphalt pavement with salt-storage additive (APSSA). The water and chloride transport in the overlay when subjected to varying precipitation, temperature, thermal cracking, and fatigue cracking over time were modeled using a Finite Element Method based software. The simulation included two parts: water transport followed by chloride transport. Water transport that obeys the law of conservation of mass was modeled using the phase transport in porous media (phtr) interface of COMSOL, while chloride transport based on Fick’s second law was modeled with the transport of diluted species (tds) interface. The simulation results show that the anti-icing function of a 16-mm thick overlay was fully effective in 2 years and 5 years for the minimum pavement temperature above -3.4 °C and -2.4 °C, respectively. These two pavement temperatures are equivalent to 97.4-percentile and 96.3-percentile of historical hourly pavement temperature near Pullman, Washington. \",\"PeriodicalId\":73793,\"journal\":{\"name\":\"Journal of infrastructure preservation and resilience\",\"volume\":\"193 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of infrastructure preservation and resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43065-021-00047-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of infrastructure preservation and resilience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43065-021-00047-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model development and prediction of anti-icing longevity of asphalt pavement with salt-storage additive
This study established a systematic simulation framework to predict the anti-icing longevity of a thin overlay of asphalt pavement with salt-storage additive (APSSA). The water and chloride transport in the overlay when subjected to varying precipitation, temperature, thermal cracking, and fatigue cracking over time were modeled using a Finite Element Method based software. The simulation included two parts: water transport followed by chloride transport. Water transport that obeys the law of conservation of mass was modeled using the phase transport in porous media (phtr) interface of COMSOL, while chloride transport based on Fick’s second law was modeled with the transport of diluted species (tds) interface. The simulation results show that the anti-icing function of a 16-mm thick overlay was fully effective in 2 years and 5 years for the minimum pavement temperature above -3.4 °C and -2.4 °C, respectively. These two pavement temperatures are equivalent to 97.4-percentile and 96.3-percentile of historical hourly pavement temperature near Pullman, Washington.