nfi和遥感在收获率评估中的潜力和局限性:对Breidenbach等人的回复。

IF 2.5 3区 农林科学 Q1 FORESTRY Annals of Forest Science Pub Date : 2022-07-13 DOI:10.1186/s13595-022-01150-y
Guido Ceccherini, Gregory Duveiller, Giacomo Grassi, Guido Lemoine, Valerio Avitabile, Roberto Pilli, Alessandro Cescatti
{"title":"nfi和遥感在收获率评估中的潜力和局限性:对Breidenbach等人的回复。","authors":"Guido Ceccherini, Gregory Duveiller, Giacomo Grassi, Guido Lemoine, Valerio Avitabile, Roberto Pilli, Alessandro Cescatti","doi":"10.1186/s13595-022-01150-y","DOIUrl":null,"url":null,"abstract":"<p>The timely and accurate monitoring of forest resources is becoming of increasing importance in light of the multi-functionality of these ecosystems and their increasing vulnerability to climate change. Remote sensing observations of tree cover and systematic ground observations from National Forest Inventories (NFIs) represent the two major sources of information to assess forest area and use. The specificity of two methods is calling for an in-depth analysis of their strengths and weaknesses and for the design of novel methods emerging from the integration of satellite and surface data. On this specific debate, a recent paper by Breidenbach et al. published in this journal suggests that the detection of a recent increase in EU forest harvest rate—as reported in Nature by Ceccherini et al.—is largely due to technical limitations of satellite-based mapping. The article centers on the difficulty of the approaches to estimate wood harvest based on remote sensing. However, it does not discuss issues with the robustness of validation approaches solely based on NFIs. Here we discuss the use of plot data as a validation set for remote sensing products, discussing potentials and limitations of both NFIs and remote sensing, and how they can be used synergistically. Finally, we highlight the need to collect in situ data that is both relevant and compatible with remote sensing products within the European Union.</p>","PeriodicalId":7994,"journal":{"name":"Annals of Forest Science","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Potentials and limitations of NFIs and remote sensing in the assessment of harvest rates: a reply to Breidenbach et al.\",\"authors\":\"Guido Ceccherini, Gregory Duveiller, Giacomo Grassi, Guido Lemoine, Valerio Avitabile, Roberto Pilli, Alessandro Cescatti\",\"doi\":\"10.1186/s13595-022-01150-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The timely and accurate monitoring of forest resources is becoming of increasing importance in light of the multi-functionality of these ecosystems and their increasing vulnerability to climate change. Remote sensing observations of tree cover and systematic ground observations from National Forest Inventories (NFIs) represent the two major sources of information to assess forest area and use. The specificity of two methods is calling for an in-depth analysis of their strengths and weaknesses and for the design of novel methods emerging from the integration of satellite and surface data. On this specific debate, a recent paper by Breidenbach et al. published in this journal suggests that the detection of a recent increase in EU forest harvest rate—as reported in Nature by Ceccherini et al.—is largely due to technical limitations of satellite-based mapping. The article centers on the difficulty of the approaches to estimate wood harvest based on remote sensing. However, it does not discuss issues with the robustness of validation approaches solely based on NFIs. Here we discuss the use of plot data as a validation set for remote sensing products, discussing potentials and limitations of both NFIs and remote sensing, and how they can be used synergistically. Finally, we highlight the need to collect in situ data that is both relevant and compatible with remote sensing products within the European Union.</p>\",\"PeriodicalId\":7994,\"journal\":{\"name\":\"Annals of Forest Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Forest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s13595-022-01150-y\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Forest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13595-022-01150-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1

摘要

鉴于森林生态系统的多功能性及其对气候变化的日益脆弱性,及时和准确地监测森林资源正变得越来越重要。树木覆盖的遥感观测和国家森林清单的系统地面观测是评估森林面积和利用的两个主要信息来源。这两种方法的特殊性要求对其优缺点进行深入分析,并设计从卫星和地面数据的综合中产生的新方法。在这一特定的争论中,Breidenbach等人最近发表在该杂志上的一篇论文表明,Ceccherini等人在《自然》杂志上报道的欧盟森林采伐率最近的增加在很大程度上是由于卫星测绘的技术限制。本文主要讨论了基于遥感的木材采伐估算方法的难点。然而,它没有讨论仅基于nfi的验证方法的鲁棒性问题。在这里,我们讨论了使用地块数据作为遥感产品的验证集,讨论了nfi和遥感的潜力和局限性,以及如何协同使用它们。最后,我们强调需要收集与欧洲联盟内遥感产品相关和兼容的实地数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potentials and limitations of NFIs and remote sensing in the assessment of harvest rates: a reply to Breidenbach et al.

The timely and accurate monitoring of forest resources is becoming of increasing importance in light of the multi-functionality of these ecosystems and their increasing vulnerability to climate change. Remote sensing observations of tree cover and systematic ground observations from National Forest Inventories (NFIs) represent the two major sources of information to assess forest area and use. The specificity of two methods is calling for an in-depth analysis of their strengths and weaknesses and for the design of novel methods emerging from the integration of satellite and surface data. On this specific debate, a recent paper by Breidenbach et al. published in this journal suggests that the detection of a recent increase in EU forest harvest rate—as reported in Nature by Ceccherini et al.—is largely due to technical limitations of satellite-based mapping. The article centers on the difficulty of the approaches to estimate wood harvest based on remote sensing. However, it does not discuss issues with the robustness of validation approaches solely based on NFIs. Here we discuss the use of plot data as a validation set for remote sensing products, discussing potentials and limitations of both NFIs and remote sensing, and how they can be used synergistically. Finally, we highlight the need to collect in situ data that is both relevant and compatible with remote sensing products within the European Union.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Forest Science
Annals of Forest Science 农林科学-林学
CiteScore
6.70
自引率
3.30%
发文量
45
审稿时长
12-24 weeks
期刊介绍: Annals of Forest Science is an official publication of the French National Institute for Agriculture, Food and Environment (INRAE) -Up-to-date coverage of current developments and trends in forest research and forestry Topics include ecology and ecophysiology, genetics and improvement, tree physiology, wood quality, and silviculture -Formerly known as Annales des Sciences Forestières -Biology of trees and associated organisms (symbionts, pathogens, pests) -Forest dynamics and ecosystem processes under environmental or management drivers (ecology, genetics) -Risks and disturbances affecting forest ecosystems (biology, ecology, economics) -Forestry wood chain (tree breeding, forest management and productivity, ecosystem services, silviculture and plantation management) -Wood sciences (relationships between wood structure and tree functions, and between forest management or environment and wood properties)
期刊最新文献
Genetic structure of the European white elm (Ulmus laevis Pall., Ulmaceae) in Switzerland The rates of starch depletion and hydraulic failure both play a role in drought-induced seedling mortality Exploring the role of plant hydraulics in canopy fuel moisture content: insights from an experimental drought study on Pinus halepensis Mill. and Quercus ilex L. Stakeholders’ participation in decreasing wildfire risk in the context of natural resource management in the Podpoľanie region of Slovakia Diversity, composition, and structure of a 1-hectare tree plot in the cloud forest of the Sierra Nevada de Santa Marta, Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1