{"title":"基于类量子贝叶斯网络的动态多属性灰色目标群决策模型","authors":"Na Zhang, Haiyan Wang, Zaiwu Gong","doi":"10.1108/gs-08-2023-0072","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Grey target decision-making serves as a pivotal analytical tool for addressing dynamic multi-attribute group decision-making amidst uncertain information. However, the setting of bull's eye is frequently subjective, and each stage is considered independent of the others. Interference effects between each stage can easily influence one another. To address these challenges effectively, this paper employs quantum probability theory to construct quantum-like Bayesian networks, addressing interference effects in dynamic multi-attribute group decision-making.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Firstly, the bull's eye matrix of the scheme stage is derived based on the principle of group negotiation and maximum satisfaction deviation. Secondly, a nonlinear programming model for stage weight is constructed by using an improved Orness measure constraint to determine the stage weight. Finally, the quantum-like Bayesian network is constructed to explore the interference effect between stages. In this process, the decision of each stage is regarded as a wave function which occurs synchronously, with mutual interference impacting the aggregate result. Finally, the effectiveness and rationality of the model are verified through a public health emergency.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The research shows that there are interference effects between each stage. Both the dynamic grey target group decision model and the dynamic multi-attribute group decision model based on quantum-like Bayesian network proposed in this paper are scientific and effective. They enhance the flexibility and stability of actual decision-making and provide significant practical value.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>To address issues like stage interference effects, subjective bull's eye settings and the absence of participative behavior in decision-making groups, this paper develops a grey target decision model grounded in group negotiation and maximum satisfaction deviation. Furthermore, by integrating the quantum-like Bayesian network model, this paper offers a novel perspective for addressing information fusion and subjective cognitive biases during decision-making.</p><!--/ Abstract__block -->","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"331 ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic multi-attribute grey target group decision model based on quantum-like Bayesian networks\",\"authors\":\"Na Zhang, Haiyan Wang, Zaiwu Gong\",\"doi\":\"10.1108/gs-08-2023-0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Grey target decision-making serves as a pivotal analytical tool for addressing dynamic multi-attribute group decision-making amidst uncertain information. However, the setting of bull's eye is frequently subjective, and each stage is considered independent of the others. Interference effects between each stage can easily influence one another. To address these challenges effectively, this paper employs quantum probability theory to construct quantum-like Bayesian networks, addressing interference effects in dynamic multi-attribute group decision-making.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Firstly, the bull's eye matrix of the scheme stage is derived based on the principle of group negotiation and maximum satisfaction deviation. Secondly, a nonlinear programming model for stage weight is constructed by using an improved Orness measure constraint to determine the stage weight. Finally, the quantum-like Bayesian network is constructed to explore the interference effect between stages. In this process, the decision of each stage is regarded as a wave function which occurs synchronously, with mutual interference impacting the aggregate result. Finally, the effectiveness and rationality of the model are verified through a public health emergency.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The research shows that there are interference effects between each stage. Both the dynamic grey target group decision model and the dynamic multi-attribute group decision model based on quantum-like Bayesian network proposed in this paper are scientific and effective. They enhance the flexibility and stability of actual decision-making and provide significant practical value.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>To address issues like stage interference effects, subjective bull's eye settings and the absence of participative behavior in decision-making groups, this paper develops a grey target decision model grounded in group negotiation and maximum satisfaction deviation. Furthermore, by integrating the quantum-like Bayesian network model, this paper offers a novel perspective for addressing information fusion and subjective cognitive biases during decision-making.</p><!--/ Abstract__block -->\",\"PeriodicalId\":48597,\"journal\":{\"name\":\"Grey Systems-Theory and Application\",\"volume\":\"331 \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grey Systems-Theory and Application\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/gs-08-2023-0072\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grey Systems-Theory and Application","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/gs-08-2023-0072","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Dynamic multi-attribute grey target group decision model based on quantum-like Bayesian networks
Purpose
Grey target decision-making serves as a pivotal analytical tool for addressing dynamic multi-attribute group decision-making amidst uncertain information. However, the setting of bull's eye is frequently subjective, and each stage is considered independent of the others. Interference effects between each stage can easily influence one another. To address these challenges effectively, this paper employs quantum probability theory to construct quantum-like Bayesian networks, addressing interference effects in dynamic multi-attribute group decision-making.
Design/methodology/approach
Firstly, the bull's eye matrix of the scheme stage is derived based on the principle of group negotiation and maximum satisfaction deviation. Secondly, a nonlinear programming model for stage weight is constructed by using an improved Orness measure constraint to determine the stage weight. Finally, the quantum-like Bayesian network is constructed to explore the interference effect between stages. In this process, the decision of each stage is regarded as a wave function which occurs synchronously, with mutual interference impacting the aggregate result. Finally, the effectiveness and rationality of the model are verified through a public health emergency.
Findings
The research shows that there are interference effects between each stage. Both the dynamic grey target group decision model and the dynamic multi-attribute group decision model based on quantum-like Bayesian network proposed in this paper are scientific and effective. They enhance the flexibility and stability of actual decision-making and provide significant practical value.
Originality/value
To address issues like stage interference effects, subjective bull's eye settings and the absence of participative behavior in decision-making groups, this paper develops a grey target decision model grounded in group negotiation and maximum satisfaction deviation. Furthermore, by integrating the quantum-like Bayesian network model, this paper offers a novel perspective for addressing information fusion and subjective cognitive biases during decision-making.