大理论还是设计指南?论理论在计算机教育研究中的作用

IF 3.2 3区 工程技术 Q1 EDUCATION, SCIENTIFIC DISCIPLINES ACM Transactions on Computing Education Pub Date : 2022-12-29 DOI:https://dl.acm.org/doi/10.1145/3487049
Matti Tedre, John Pajunen
{"title":"大理论还是设计指南?论理论在计算机教育研究中的作用","authors":"Matti Tedre, John Pajunen","doi":"https://dl.acm.org/doi/10.1145/3487049","DOIUrl":null,"url":null,"abstract":"<p>A rich body of empirically grounded results and a solid theory base have often been viewed as signs of a mature discipline. Many disciplines have frequently debated what they should accept as legitimate kinds of theories, the proper roles of theory, and appropriate reference disciplines. Computing education research (CER) in particular has seen a growing number of calls for the development of domain-specific theories for CER, an adaptation of theories from other fields, and engagement with theory-based experimental and predictive research in CER. Many of those calls share the same concerns and aims, yet they use very different vocabulary and lack a consensus over an essential concept: theory. </p><p>This article presents sticking points and trouble spots in CER’s theory debates and presents a number of suggestions and ways forward. Firstly, by slightly shifting towards a model-based view of science, CER can avoid centuries of conceptual baggage related to the concept of theory. Secondly, insofar as fields like design, engineering, and social science are considered to be legitimate parts of CER, the role of theory in many CER studies needs to be judged by the criteria of the philosophy of engineering, technology, and social science, not the philosophy of (natural) science. Thirdly, instead of force-fitting elements of ill-suited research paradigms from other disciplines, the philosophy of CER should focus on building a consensus on CER’s own paradigm and describing the field’s relationship with theory in CER’s own terms.</p>","PeriodicalId":48764,"journal":{"name":"ACM Transactions on Computing Education","volume":"71 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grand Theories or Design Guidelines? Perspectives on the Role of Theory in Computing Education Research\",\"authors\":\"Matti Tedre, John Pajunen\",\"doi\":\"https://dl.acm.org/doi/10.1145/3487049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A rich body of empirically grounded results and a solid theory base have often been viewed as signs of a mature discipline. Many disciplines have frequently debated what they should accept as legitimate kinds of theories, the proper roles of theory, and appropriate reference disciplines. Computing education research (CER) in particular has seen a growing number of calls for the development of domain-specific theories for CER, an adaptation of theories from other fields, and engagement with theory-based experimental and predictive research in CER. Many of those calls share the same concerns and aims, yet they use very different vocabulary and lack a consensus over an essential concept: theory. </p><p>This article presents sticking points and trouble spots in CER’s theory debates and presents a number of suggestions and ways forward. Firstly, by slightly shifting towards a model-based view of science, CER can avoid centuries of conceptual baggage related to the concept of theory. Secondly, insofar as fields like design, engineering, and social science are considered to be legitimate parts of CER, the role of theory in many CER studies needs to be judged by the criteria of the philosophy of engineering, technology, and social science, not the philosophy of (natural) science. Thirdly, instead of force-fitting elements of ill-suited research paradigms from other disciplines, the philosophy of CER should focus on building a consensus on CER’s own paradigm and describing the field’s relationship with theory in CER’s own terms.</p>\",\"PeriodicalId\":48764,\"journal\":{\"name\":\"ACM Transactions on Computing Education\",\"volume\":\"71 10\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computing Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3487049\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computing Education","FirstCategoryId":"5","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3487049","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

丰富的实证结果和坚实的理论基础常常被视为一门学科成熟的标志。许多学科经常争论他们应该接受什么是合法的理论,理论的适当角色,以及适当的参考学科。特别是计算教育研究(CER)已经看到越来越多的人呼吁为CER发展特定领域的理论,适应其他领域的理论,并参与基于理论的实验和预测研究。这些呼吁中有许多有着相同的关注点和目标,但它们使用的词汇非常不同,在一个基本概念上缺乏共识:理论。本文提出了关于CER理论争论的症结和难点,并提出了一些建议和前进的方向。首先,通过稍微转向基于模型的科学观,CER可以避免几个世纪以来与理论概念相关的概念包袱。其次,只要设计、工程和社会科学等领域被认为是经济责任的合法组成部分,理论在许多经济责任研究中的作用需要根据工程、技术和社会科学哲学的标准来判断,而不是(自然)科学哲学。第三,CER哲学不应将不合适的研究范式从其他学科中强行套用,而应侧重于就CER自己的范式建立共识,并以CER自己的方式描述该领域与理论的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grand Theories or Design Guidelines? Perspectives on the Role of Theory in Computing Education Research

A rich body of empirically grounded results and a solid theory base have often been viewed as signs of a mature discipline. Many disciplines have frequently debated what they should accept as legitimate kinds of theories, the proper roles of theory, and appropriate reference disciplines. Computing education research (CER) in particular has seen a growing number of calls for the development of domain-specific theories for CER, an adaptation of theories from other fields, and engagement with theory-based experimental and predictive research in CER. Many of those calls share the same concerns and aims, yet they use very different vocabulary and lack a consensus over an essential concept: theory.

This article presents sticking points and trouble spots in CER’s theory debates and presents a number of suggestions and ways forward. Firstly, by slightly shifting towards a model-based view of science, CER can avoid centuries of conceptual baggage related to the concept of theory. Secondly, insofar as fields like design, engineering, and social science are considered to be legitimate parts of CER, the role of theory in many CER studies needs to be judged by the criteria of the philosophy of engineering, technology, and social science, not the philosophy of (natural) science. Thirdly, instead of force-fitting elements of ill-suited research paradigms from other disciplines, the philosophy of CER should focus on building a consensus on CER’s own paradigm and describing the field’s relationship with theory in CER’s own terms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computing Education
ACM Transactions on Computing Education EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
6.50
自引率
16.70%
发文量
66
期刊介绍: ACM Transactions on Computing Education (TOCE) (formerly named JERIC, Journal on Educational Resources in Computing) covers diverse aspects of computing education: traditional computer science, computer engineering, information technology, and informatics; emerging aspects of computing; and applications of computing to other disciplines. The common characteristics shared by these papers are a scholarly approach to teaching and learning, a broad appeal to educational practitioners, and a clear connection to student learning.
期刊最新文献
Evaluating ChatGPT-4 Vision on Brazil’s National Undergraduate Computer Science Exam Understanding Informatics in Continuing Vocational Education and Training Data in Germany Intent and Extent: Computer Science Concepts and Practices in Integrated Computing Creating Apps for Community and Social Good: Preliminary Learning Outcomes from a Middle School Computer Science Curriculum Doing and Defining Interdisciplinarity in Undergraduate Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1