转座子从头检测的软件评价

IF 4.7 2区 生物学 Q1 GENETICS & HEREDITY Mobile DNA Pub Date : 2022-04-27 DOI:10.1186/s13100-022-00266-2
Rodriguez, Matias, Makałowski, Wojciech
{"title":"转座子从头检测的软件评价","authors":"Rodriguez, Matias, Makałowski, Wojciech","doi":"10.1186/s13100-022-00266-2","DOIUrl":null,"url":null,"abstract":"Transposable elements (TEs) are major genomic components in most eukaryotic genomes and play an important role in genome evolution. However, despite their relevance the identification of TEs is not an easy task and a number of tools were developed to tackle this problem. To better understand how they perform, we tested several widely used tools for de novo TE detection and compared their performance on both simulated data and well curated genomic sequences. As expected, tools that build TE-models performed better than k-mer counting ones, with RepeatModeler beating competitors in most datasets. However, there is a tendency for most tools to identify TE-regions in a fragmented manner and it is also frequent that small TEs or fragmented TEs are not detected. Consequently, the identification of TEs is still a challenging endeavor and it requires a significant manual curation by an experienced expert. The results will be helpful for identifying common issues associated with TE-annotation and for evaluating how comparable are the results obtained with different tools.","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"177 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Software evaluation for de novo detection of transposons\",\"authors\":\"Rodriguez, Matias, Makałowski, Wojciech\",\"doi\":\"10.1186/s13100-022-00266-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transposable elements (TEs) are major genomic components in most eukaryotic genomes and play an important role in genome evolution. However, despite their relevance the identification of TEs is not an easy task and a number of tools were developed to tackle this problem. To better understand how they perform, we tested several widely used tools for de novo TE detection and compared their performance on both simulated data and well curated genomic sequences. As expected, tools that build TE-models performed better than k-mer counting ones, with RepeatModeler beating competitors in most datasets. However, there is a tendency for most tools to identify TE-regions in a fragmented manner and it is also frequent that small TEs or fragmented TEs are not detected. Consequently, the identification of TEs is still a challenging endeavor and it requires a significant manual curation by an experienced expert. The results will be helpful for identifying common issues associated with TE-annotation and for evaluating how comparable are the results obtained with different tools.\",\"PeriodicalId\":18854,\"journal\":{\"name\":\"Mobile DNA\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile DNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13100-022-00266-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-022-00266-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 13

摘要

转座因子(te)是真核生物基因组的主要组成部分,在基因组进化中起着重要作用。然而,尽管它们具有相关性,但TEs的识别并不是一项容易的任务,并且开发了许多工具来解决这个问题。为了更好地了解它们的表现,我们测试了几种广泛使用的从头TE检测工具,并比较了它们在模拟数据和精心策划的基因组序列上的表现。正如预期的那样,构建te模型的工具比k-mer计数工具表现得更好,在大多数数据集中,RepeatModeler击败了竞争对手。然而,大多数工具都倾向于以碎片化的方式识别te区域,并且经常无法检测到小te或碎片te。因此,te的识别仍然是一项具有挑战性的工作,需要经验丰富的专家进行大量的手工管理。这些结果将有助于识别与te注释相关的常见问题,并有助于评估使用不同工具获得的结果的可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software evaluation for de novo detection of transposons
Transposable elements (TEs) are major genomic components in most eukaryotic genomes and play an important role in genome evolution. However, despite their relevance the identification of TEs is not an easy task and a number of tools were developed to tackle this problem. To better understand how they perform, we tested several widely used tools for de novo TE detection and compared their performance on both simulated data and well curated genomic sequences. As expected, tools that build TE-models performed better than k-mer counting ones, with RepeatModeler beating competitors in most datasets. However, there is a tendency for most tools to identify TE-regions in a fragmented manner and it is also frequent that small TEs or fragmented TEs are not detected. Consequently, the identification of TEs is still a challenging endeavor and it requires a significant manual curation by an experienced expert. The results will be helpful for identifying common issues associated with TE-annotation and for evaluating how comparable are the results obtained with different tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mobile DNA
Mobile DNA GENETICS & HEREDITY-
CiteScore
8.20
自引率
6.10%
发文量
26
审稿时长
11 weeks
期刊介绍: Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.
期刊最新文献
Analysis of pericentromere composition and structure elucidated the history of the Hieracium alpinum L. genome, revealing waves of transposable elements insertions. International congress on transposable elements (ICTE 2024) in Saint Malo: breaking down transposon waves and their impact. Accelerating de novo SINE annotation in plant and animal genomes. Association of hyperactivated transposon expression with exacerbated immune activation in systemic lupus erythematosus. Widespread HCD-tRNA derived SINEs in bivalves rely on multiple LINE partners and accumulate in genic regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1