{"title":"转座子从头检测的软件评价","authors":"Rodriguez, Matias, Makałowski, Wojciech","doi":"10.1186/s13100-022-00266-2","DOIUrl":null,"url":null,"abstract":"Transposable elements (TEs) are major genomic components in most eukaryotic genomes and play an important role in genome evolution. However, despite their relevance the identification of TEs is not an easy task and a number of tools were developed to tackle this problem. To better understand how they perform, we tested several widely used tools for de novo TE detection and compared their performance on both simulated data and well curated genomic sequences. As expected, tools that build TE-models performed better than k-mer counting ones, with RepeatModeler beating competitors in most datasets. However, there is a tendency for most tools to identify TE-regions in a fragmented manner and it is also frequent that small TEs or fragmented TEs are not detected. Consequently, the identification of TEs is still a challenging endeavor and it requires a significant manual curation by an experienced expert. The results will be helpful for identifying common issues associated with TE-annotation and for evaluating how comparable are the results obtained with different tools.","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"177 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Software evaluation for de novo detection of transposons\",\"authors\":\"Rodriguez, Matias, Makałowski, Wojciech\",\"doi\":\"10.1186/s13100-022-00266-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transposable elements (TEs) are major genomic components in most eukaryotic genomes and play an important role in genome evolution. However, despite their relevance the identification of TEs is not an easy task and a number of tools were developed to tackle this problem. To better understand how they perform, we tested several widely used tools for de novo TE detection and compared their performance on both simulated data and well curated genomic sequences. As expected, tools that build TE-models performed better than k-mer counting ones, with RepeatModeler beating competitors in most datasets. However, there is a tendency for most tools to identify TE-regions in a fragmented manner and it is also frequent that small TEs or fragmented TEs are not detected. Consequently, the identification of TEs is still a challenging endeavor and it requires a significant manual curation by an experienced expert. The results will be helpful for identifying common issues associated with TE-annotation and for evaluating how comparable are the results obtained with different tools.\",\"PeriodicalId\":18854,\"journal\":{\"name\":\"Mobile DNA\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile DNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13100-022-00266-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-022-00266-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Software evaluation for de novo detection of transposons
Transposable elements (TEs) are major genomic components in most eukaryotic genomes and play an important role in genome evolution. However, despite their relevance the identification of TEs is not an easy task and a number of tools were developed to tackle this problem. To better understand how they perform, we tested several widely used tools for de novo TE detection and compared their performance on both simulated data and well curated genomic sequences. As expected, tools that build TE-models performed better than k-mer counting ones, with RepeatModeler beating competitors in most datasets. However, there is a tendency for most tools to identify TE-regions in a fragmented manner and it is also frequent that small TEs or fragmented TEs are not detected. Consequently, the identification of TEs is still a challenging endeavor and it requires a significant manual curation by an experienced expert. The results will be helpful for identifying common issues associated with TE-annotation and for evaluating how comparable are the results obtained with different tools.
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.