Yan, Jiaxiu, Zhao, Yifei, Du, Juan, Wang, Yu, Wang, Shaohua, Wang, Qing, Zhao, Xu, Xu, Wei, Zhao, Ke
{"title":"RNA传感器MDA5通过调节LINE-1 5′-UTR启动子活性抑制LINE-1逆转录转位","authors":"Yan, Jiaxiu, Zhao, Yifei, Du, Juan, Wang, Yu, Wang, Shaohua, Wang, Qing, Zhao, Xu, Xu, Wei, Zhao, Ke","doi":"10.1186/s13100-022-00268-0","DOIUrl":null,"url":null,"abstract":"Type 1 long interspersed elements, or LINE-1, are the only retroelements that replicate autonomously in human cells. The retrotransposition process of LINE-1 can trigger the activation of the innate immune system and has been proposed to play a role in the development of several autoimmune diseases, including Aicardi-Goutières syndrome (AGS). In contrast, all known AGS-associated proteins, except MDA5, have been reported to affect LINE-1 activity. Thus, MDA5 is likely to also function as a LINE-1 suppressor. MDA5 was found to potently suppress LINE-1 activity in a reporter-based LINE-1 retrotransposition assay. Although MDA5 is an endogenous RNA sensor able to activate the innate immune system, increased interferon (IFN) expression only contributed in part to MDA5-mediated LINE-1 suppression. Instead, MDA5 potently regulated the promoter activity of LINE-1 5′-UTR, as confirmed by transiently expressed myc-tagged MDA5 or knockdown of endogenous MDA5 expression. Consequently, MDA5 effectively reduced the generation of LINE-1 RNA and the subsequent expression of LINE-1 ORF1p and ORF2p. Interestingly, despite MDA5 being a multi-domain protein, the N-terminal 2CARD domain alone is sufficient to interact with LINE-1 5′-UTR and inhibit LINE-1 promoter activity. Our data reveal that MDA5 functions as a promoter regulator; it directly binds to the LINE-1 5′-UTR and suppresses its promoter activity. Consequently, MDA5 reduces LINE-1 RNA and protein levels, and ultimately inhibits LINE-1 retrotransposition. In contrast, MDA5-induced IFN expression only plays a mild role in MDA5-mediated LINE-1 suppression. In addition, the N-terminal 2CARD domain was found to be a functional region for MDA5 upon inhibition of LINE-1 replication. Thus, our data suggest that besides being an initiator of the innate immune system, MDA5 is also an effector against LINE-1 activity, potentially forming a feedback loop by suppressing LINE-1-induced innate immune activation.","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"19 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RNA sensor MDA5 suppresses LINE-1 retrotransposition by regulating the promoter activity of LINE-1 5′-UTR\",\"authors\":\"Yan, Jiaxiu, Zhao, Yifei, Du, Juan, Wang, Yu, Wang, Shaohua, Wang, Qing, Zhao, Xu, Xu, Wei, Zhao, Ke\",\"doi\":\"10.1186/s13100-022-00268-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type 1 long interspersed elements, or LINE-1, are the only retroelements that replicate autonomously in human cells. The retrotransposition process of LINE-1 can trigger the activation of the innate immune system and has been proposed to play a role in the development of several autoimmune diseases, including Aicardi-Goutières syndrome (AGS). In contrast, all known AGS-associated proteins, except MDA5, have been reported to affect LINE-1 activity. Thus, MDA5 is likely to also function as a LINE-1 suppressor. MDA5 was found to potently suppress LINE-1 activity in a reporter-based LINE-1 retrotransposition assay. Although MDA5 is an endogenous RNA sensor able to activate the innate immune system, increased interferon (IFN) expression only contributed in part to MDA5-mediated LINE-1 suppression. Instead, MDA5 potently regulated the promoter activity of LINE-1 5′-UTR, as confirmed by transiently expressed myc-tagged MDA5 or knockdown of endogenous MDA5 expression. Consequently, MDA5 effectively reduced the generation of LINE-1 RNA and the subsequent expression of LINE-1 ORF1p and ORF2p. Interestingly, despite MDA5 being a multi-domain protein, the N-terminal 2CARD domain alone is sufficient to interact with LINE-1 5′-UTR and inhibit LINE-1 promoter activity. Our data reveal that MDA5 functions as a promoter regulator; it directly binds to the LINE-1 5′-UTR and suppresses its promoter activity. Consequently, MDA5 reduces LINE-1 RNA and protein levels, and ultimately inhibits LINE-1 retrotransposition. In contrast, MDA5-induced IFN expression only plays a mild role in MDA5-mediated LINE-1 suppression. In addition, the N-terminal 2CARD domain was found to be a functional region for MDA5 upon inhibition of LINE-1 replication. Thus, our data suggest that besides being an initiator of the innate immune system, MDA5 is also an effector against LINE-1 activity, potentially forming a feedback loop by suppressing LINE-1-induced innate immune activation.\",\"PeriodicalId\":18854,\"journal\":{\"name\":\"Mobile DNA\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile DNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13100-022-00268-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-022-00268-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
RNA sensor MDA5 suppresses LINE-1 retrotransposition by regulating the promoter activity of LINE-1 5′-UTR
Type 1 long interspersed elements, or LINE-1, are the only retroelements that replicate autonomously in human cells. The retrotransposition process of LINE-1 can trigger the activation of the innate immune system and has been proposed to play a role in the development of several autoimmune diseases, including Aicardi-Goutières syndrome (AGS). In contrast, all known AGS-associated proteins, except MDA5, have been reported to affect LINE-1 activity. Thus, MDA5 is likely to also function as a LINE-1 suppressor. MDA5 was found to potently suppress LINE-1 activity in a reporter-based LINE-1 retrotransposition assay. Although MDA5 is an endogenous RNA sensor able to activate the innate immune system, increased interferon (IFN) expression only contributed in part to MDA5-mediated LINE-1 suppression. Instead, MDA5 potently regulated the promoter activity of LINE-1 5′-UTR, as confirmed by transiently expressed myc-tagged MDA5 or knockdown of endogenous MDA5 expression. Consequently, MDA5 effectively reduced the generation of LINE-1 RNA and the subsequent expression of LINE-1 ORF1p and ORF2p. Interestingly, despite MDA5 being a multi-domain protein, the N-terminal 2CARD domain alone is sufficient to interact with LINE-1 5′-UTR and inhibit LINE-1 promoter activity. Our data reveal that MDA5 functions as a promoter regulator; it directly binds to the LINE-1 5′-UTR and suppresses its promoter activity. Consequently, MDA5 reduces LINE-1 RNA and protein levels, and ultimately inhibits LINE-1 retrotransposition. In contrast, MDA5-induced IFN expression only plays a mild role in MDA5-mediated LINE-1 suppression. In addition, the N-terminal 2CARD domain was found to be a functional region for MDA5 upon inhibition of LINE-1 replication. Thus, our data suggest that besides being an initiator of the innate immune system, MDA5 is also an effector against LINE-1 activity, potentially forming a feedback loop by suppressing LINE-1-induced innate immune activation.
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.