{"title":"环境砷污染对开心果油光合作用、抗氧化特性和生物合成的影响","authors":"Simin Yazdanpanah-Ravari, Hossein Heidari Sharifabad, Hossein Abbaspour, Alireza Iranbakhsh","doi":"10.1007/s10725-023-01084-z","DOIUrl":null,"url":null,"abstract":"<p>Toxic elements have adversely negative effect on soil, water and plants existing nearby. To investigate the impact of arsenic contamination on physiological properties, antioxidant activities, and synthesis of pistachio oil, an experiment was conducted in 2021 in a Completely Randomized Design. The obtained results have demonstrated that the highest As content in soil in Shahr-e-Babak area was 1200 (mg/kg), and the highest As content in irrigation water in Sirjan area averaged 483 (ug/l). On the other hand, the health limits for arsenic are 30 (mg/kg) in soil and 10 (ug/l) in water. Moreover, the results demonstrated that the amounts of arsenic in different organs, bio concentration factor (BCF), and Translocation factor (TF) were different. This amount in roots was higher significantly than in the leaves. The highest amounts of BCF found in the leaves and fruits (0.11 and 0.015, respectively). The TF changes were found more frequent in pistachio leaves than fruits up to 10 times. In addition, some variables like membrane leakage (%) malondialdehyde, carotenoids and flavonoids, glutathione peroxidase activity, glutathione reductase, phenylalanine amoliase, pyrroline-5-carboxylase synthase, lipoxygenase, and linoleic fatty acid moved upward due to an increase in total concentrations of arsenic. While, Chlorophyll a and b, protein content, glutathione, ascorbate peroxidase, proline dehydrogenase, oil content, oleic acid, and palmitic acid decreased linearly. Besides, changes in malondialdehyde, Chlorophyll a, flavonoids, and pyrroline-5-carboxylase synthase showed the high correlation with changes in arsenic level. Generally, it can be considered arsenic accumulation As a cause of damage of protein structure, cell membranes, and photosynthetic pigments in pistachio.</p>","PeriodicalId":20412,"journal":{"name":"Plant Growth Regulation","volume":"2015 29","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of environmental-based arsenic contamination on photosynthesis, antioxidant profiling, and biosynthesis of pistachio oil\",\"authors\":\"Simin Yazdanpanah-Ravari, Hossein Heidari Sharifabad, Hossein Abbaspour, Alireza Iranbakhsh\",\"doi\":\"10.1007/s10725-023-01084-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Toxic elements have adversely negative effect on soil, water and plants existing nearby. To investigate the impact of arsenic contamination on physiological properties, antioxidant activities, and synthesis of pistachio oil, an experiment was conducted in 2021 in a Completely Randomized Design. The obtained results have demonstrated that the highest As content in soil in Shahr-e-Babak area was 1200 (mg/kg), and the highest As content in irrigation water in Sirjan area averaged 483 (ug/l). On the other hand, the health limits for arsenic are 30 (mg/kg) in soil and 10 (ug/l) in water. Moreover, the results demonstrated that the amounts of arsenic in different organs, bio concentration factor (BCF), and Translocation factor (TF) were different. This amount in roots was higher significantly than in the leaves. The highest amounts of BCF found in the leaves and fruits (0.11 and 0.015, respectively). The TF changes were found more frequent in pistachio leaves than fruits up to 10 times. In addition, some variables like membrane leakage (%) malondialdehyde, carotenoids and flavonoids, glutathione peroxidase activity, glutathione reductase, phenylalanine amoliase, pyrroline-5-carboxylase synthase, lipoxygenase, and linoleic fatty acid moved upward due to an increase in total concentrations of arsenic. While, Chlorophyll a and b, protein content, glutathione, ascorbate peroxidase, proline dehydrogenase, oil content, oleic acid, and palmitic acid decreased linearly. Besides, changes in malondialdehyde, Chlorophyll a, flavonoids, and pyrroline-5-carboxylase synthase showed the high correlation with changes in arsenic level. Generally, it can be considered arsenic accumulation As a cause of damage of protein structure, cell membranes, and photosynthetic pigments in pistachio.</p>\",\"PeriodicalId\":20412,\"journal\":{\"name\":\"Plant Growth Regulation\",\"volume\":\"2015 29\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10725-023-01084-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10725-023-01084-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The effects of environmental-based arsenic contamination on photosynthesis, antioxidant profiling, and biosynthesis of pistachio oil
Toxic elements have adversely negative effect on soil, water and plants existing nearby. To investigate the impact of arsenic contamination on physiological properties, antioxidant activities, and synthesis of pistachio oil, an experiment was conducted in 2021 in a Completely Randomized Design. The obtained results have demonstrated that the highest As content in soil in Shahr-e-Babak area was 1200 (mg/kg), and the highest As content in irrigation water in Sirjan area averaged 483 (ug/l). On the other hand, the health limits for arsenic are 30 (mg/kg) in soil and 10 (ug/l) in water. Moreover, the results demonstrated that the amounts of arsenic in different organs, bio concentration factor (BCF), and Translocation factor (TF) were different. This amount in roots was higher significantly than in the leaves. The highest amounts of BCF found in the leaves and fruits (0.11 and 0.015, respectively). The TF changes were found more frequent in pistachio leaves than fruits up to 10 times. In addition, some variables like membrane leakage (%) malondialdehyde, carotenoids and flavonoids, glutathione peroxidase activity, glutathione reductase, phenylalanine amoliase, pyrroline-5-carboxylase synthase, lipoxygenase, and linoleic fatty acid moved upward due to an increase in total concentrations of arsenic. While, Chlorophyll a and b, protein content, glutathione, ascorbate peroxidase, proline dehydrogenase, oil content, oleic acid, and palmitic acid decreased linearly. Besides, changes in malondialdehyde, Chlorophyll a, flavonoids, and pyrroline-5-carboxylase synthase showed the high correlation with changes in arsenic level. Generally, it can be considered arsenic accumulation As a cause of damage of protein structure, cell membranes, and photosynthetic pigments in pistachio.
期刊介绍:
Plant Growth Regulation is an international journal publishing original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research using hormonal, physiological, environmental, genetical, biophysical, developmental or molecular approaches to the study of plant growth regulation.
Emphasis is placed on papers presenting the results of original research. Occasional reviews on important topics will also be welcome. All contributions must be in English.