5g无线系统高隔离MIMO天线设计性能分析

IF 1.2 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Antennas and Propagation Pub Date : 2023-11-29 DOI:10.1155/2023/1566430
Suverna Sengar, Praveen Kumar Malik, Puneet Chandra Srivastava, Kiran Srivastava, Anita Gehlot
{"title":"5g无线系统高隔离MIMO天线设计性能分析","authors":"Suverna Sengar, Praveen Kumar Malik, Puneet Chandra Srivastava, Kiran Srivastava, Anita Gehlot","doi":"10.1155/2023/1566430","DOIUrl":null,"url":null,"abstract":"This paper investigates different approaches for achieving isolation in a MIMO antenna design. It provides an in-depth comparison of these techniques, analyzing their advantages and disadvantages. The challenges of obtaining sufficient isolation in modern MIMO antenna design are discussed, and various isolation methods developed for the MIMO design are examined. The study introduces a compact 28 GHz 4-port MIMO antenna design, which is placed on a Rogers RT/Duroid 5880 substrate. The design includes a rectangular patch with semicircles at the ends and dual slots etched from it. A partial ground plane is integrated into the antenna to achieve an operating frequency range from 22 to 29 GHz, centered at 24 GHz. To reduce mutual coupling between elements, four elements are arranged orthogonally and four stubs are added at a specific frequency band to enhance isolation. The ground plane also incorporates a defected ground structure (DGS) to improve gain. To optimize the antenna’s bandwidth, a ground cut technique is used, resulting in a 0.7 GHz bandwidth enhancement at the cost of some isolation. The antenna operates in the range of 22.5– 29.1 GHz, with a peak gain of 6.39 dBi. Each technique is compared based on parameters such as <i>S</i>-parameters (return loss or reflection coefficient), voltage standing wave ratio (VSWR), isolation level, and peak gain. Simulated results are shown for each of the techniques to compare their performance by using Ansys HFSS simulations which confirm that the designed antenna meets the target band requirements and could be used in 5 G communications.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":"16 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of MIMO Antenna Design with High Isolation Techniques for 5 G Wireless Systems\",\"authors\":\"Suverna Sengar, Praveen Kumar Malik, Puneet Chandra Srivastava, Kiran Srivastava, Anita Gehlot\",\"doi\":\"10.1155/2023/1566430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates different approaches for achieving isolation in a MIMO antenna design. It provides an in-depth comparison of these techniques, analyzing their advantages and disadvantages. The challenges of obtaining sufficient isolation in modern MIMO antenna design are discussed, and various isolation methods developed for the MIMO design are examined. The study introduces a compact 28 GHz 4-port MIMO antenna design, which is placed on a Rogers RT/Duroid 5880 substrate. The design includes a rectangular patch with semicircles at the ends and dual slots etched from it. A partial ground plane is integrated into the antenna to achieve an operating frequency range from 22 to 29 GHz, centered at 24 GHz. To reduce mutual coupling between elements, four elements are arranged orthogonally and four stubs are added at a specific frequency band to enhance isolation. The ground plane also incorporates a defected ground structure (DGS) to improve gain. To optimize the antenna’s bandwidth, a ground cut technique is used, resulting in a 0.7 GHz bandwidth enhancement at the cost of some isolation. The antenna operates in the range of 22.5– 29.1 GHz, with a peak gain of 6.39 dBi. Each technique is compared based on parameters such as <i>S</i>-parameters (return loss or reflection coefficient), voltage standing wave ratio (VSWR), isolation level, and peak gain. Simulated results are shown for each of the techniques to compare their performance by using Ansys HFSS simulations which confirm that the designed antenna meets the target band requirements and could be used in 5 G communications.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1566430\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/1566430","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在MIMO天线设计中实现隔离的不同方法。对这些技术进行了深入的比较,分析了它们的优缺点。讨论了在现代MIMO天线设计中获得充分隔离所面临的挑战,并对为MIMO设计开发的各种隔离方法进行了研究。该研究介绍了一种紧凑的28 GHz 4端口MIMO天线设计,该天线放置在Rogers RT/Duroid 5880基板上。该设计包括一个矩形贴片,两端有半圆,并从中蚀刻出双槽。部分地平面集成到天线中,以24 GHz为中心实现22 - 29 GHz的工作频率范围。为了减少元件之间的相互耦合,四个元件正交排列,并在特定频段增加四个存根以增强隔离。接平面还采用了缺陷接地结构(DGS)来提高增益。为了优化天线的带宽,采用了接地切割技术,以牺牲一定的隔离为代价获得0.7 GHz的带宽增强。该天线工作在22.5 - 29.1 GHz范围内,峰值增益为6.39 dBi。根据s参数(回波损耗或反射系数)、电压驻波比(VSWR)、隔离电平和峰值增益等参数对每种技术进行比较。通过Ansys HFSS仿真,给出了每种技术的仿真结果,比较了它们的性能,证实了设计的天线满足目标频段要求,可以用于5g通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of MIMO Antenna Design with High Isolation Techniques for 5 G Wireless Systems
This paper investigates different approaches for achieving isolation in a MIMO antenna design. It provides an in-depth comparison of these techniques, analyzing their advantages and disadvantages. The challenges of obtaining sufficient isolation in modern MIMO antenna design are discussed, and various isolation methods developed for the MIMO design are examined. The study introduces a compact 28 GHz 4-port MIMO antenna design, which is placed on a Rogers RT/Duroid 5880 substrate. The design includes a rectangular patch with semicircles at the ends and dual slots etched from it. A partial ground plane is integrated into the antenna to achieve an operating frequency range from 22 to 29 GHz, centered at 24 GHz. To reduce mutual coupling between elements, four elements are arranged orthogonally and four stubs are added at a specific frequency band to enhance isolation. The ground plane also incorporates a defected ground structure (DGS) to improve gain. To optimize the antenna’s bandwidth, a ground cut technique is used, resulting in a 0.7 GHz bandwidth enhancement at the cost of some isolation. The antenna operates in the range of 22.5– 29.1 GHz, with a peak gain of 6.39 dBi. Each technique is compared based on parameters such as S-parameters (return loss or reflection coefficient), voltage standing wave ratio (VSWR), isolation level, and peak gain. Simulated results are shown for each of the techniques to compare their performance by using Ansys HFSS simulations which confirm that the designed antenna meets the target band requirements and could be used in 5 G communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Antennas and Propagation
International Journal of Antennas and Propagation ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.10
自引率
13.30%
发文量
158
审稿时长
3.8 months
期刊介绍: International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media. As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Measurement of High-Power Microwave Impulse Response Characteristics of Reflector Materials A Simultaneous Study on Wire-Loop, Plate-Loop, and Plate Antennas for Wideband Circular Polarization Extracting Pole Characteristics of Complex Radar Targets for the Aircraft in Resonance Region Using RMSPSO_ARMA Safety Assessment of Electromagnetic Environmental Exposure for GPS Antenna of Electric Vehicle Design of the Monopulse Feeding Network for a Slotted Waveguide Array on an Annular Disk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1