{"title":"寻找鞍点和求解景观的无模型收缩二聚体鞍动力学","authors":"Lei Zhang, Pingwen Zhang, Xiangcheng Zheng","doi":"10.1007/s13160-023-00604-8","DOIUrl":null,"url":null,"abstract":"<p>We propose a model-free shrinking-dimer saddle dynamics for finding any-index saddle points and constructing the solution landscapes, in which the force in the standard saddle dynamics is replaced by a surrogate model trained by the Gassian process learning. By this means, the exact form of the model is no longer necessary such that the saddle dynamics could be implemented based only on some observations of the force. This data-driven approach not only avoids the modeling procedure that could be difficult or inaccurate, but also significantly reduces the number of queries of the force that may be expensive or time-consuming. We accordingly develop a sequential learning saddle dynamics algorithm to perform a sequence of local saddle dynamics, in which the queries of the training samples and the update or retraining of the surrogate force are performed online and around the latent trajectory in order to improve the accuracy of the surrogate model and the value of each sampling. Numerical experiments are performed to demonstrate the effectiveness and efficiency of the proposed algorithm.</p>","PeriodicalId":50264,"journal":{"name":"Japan Journal of Industrial and Applied Mathematics","volume":"13 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A model-free shrinking-dimer saddle dynamics for finding saddle point and solution landscape\",\"authors\":\"Lei Zhang, Pingwen Zhang, Xiangcheng Zheng\",\"doi\":\"10.1007/s13160-023-00604-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a model-free shrinking-dimer saddle dynamics for finding any-index saddle points and constructing the solution landscapes, in which the force in the standard saddle dynamics is replaced by a surrogate model trained by the Gassian process learning. By this means, the exact form of the model is no longer necessary such that the saddle dynamics could be implemented based only on some observations of the force. This data-driven approach not only avoids the modeling procedure that could be difficult or inaccurate, but also significantly reduces the number of queries of the force that may be expensive or time-consuming. We accordingly develop a sequential learning saddle dynamics algorithm to perform a sequence of local saddle dynamics, in which the queries of the training samples and the update or retraining of the surrogate force are performed online and around the latent trajectory in order to improve the accuracy of the surrogate model and the value of each sampling. Numerical experiments are performed to demonstrate the effectiveness and efficiency of the proposed algorithm.</p>\",\"PeriodicalId\":50264,\"journal\":{\"name\":\"Japan Journal of Industrial and Applied Mathematics\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Journal of Industrial and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13160-023-00604-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Journal of Industrial and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13160-023-00604-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A model-free shrinking-dimer saddle dynamics for finding saddle point and solution landscape
We propose a model-free shrinking-dimer saddle dynamics for finding any-index saddle points and constructing the solution landscapes, in which the force in the standard saddle dynamics is replaced by a surrogate model trained by the Gassian process learning. By this means, the exact form of the model is no longer necessary such that the saddle dynamics could be implemented based only on some observations of the force. This data-driven approach not only avoids the modeling procedure that could be difficult or inaccurate, but also significantly reduces the number of queries of the force that may be expensive or time-consuming. We accordingly develop a sequential learning saddle dynamics algorithm to perform a sequence of local saddle dynamics, in which the queries of the training samples and the update or retraining of the surrogate force are performed online and around the latent trajectory in order to improve the accuracy of the surrogate model and the value of each sampling. Numerical experiments are performed to demonstrate the effectiveness and efficiency of the proposed algorithm.
期刊介绍:
Japan Journal of Industrial and Applied Mathematics (JJIAM) is intended to provide an international forum for the expression of new ideas, as well as a site for the presentation of original research in various fields of the mathematical sciences. Consequently the most welcome types of articles are those which provide new insights into and methods for mathematical structures of various phenomena in the natural, social and industrial sciences, those which link real-world phenomena and mathematics through modeling and analysis, and those which impact the development of the mathematical sciences. The scope of the journal covers applied mathematical analysis, computational techniques and industrial mathematics.