离群值自回归残差的经验分布函数及Pearson卡方检验

IF 0.8 Q3 STATISTICS & PROBABILITY Mathematical Methods of Statistics Pub Date : 2019-02-05 DOI:10.3103/s1066530718040038
M. V. Boldin, M. N. Petriev
{"title":"离群值自回归残差的经验分布函数及Pearson卡方检验","authors":"M. V. Boldin, M. N. Petriev","doi":"10.3103/s1066530718040038","DOIUrl":null,"url":null,"abstract":"We consider a stationary linear AR(<i>p</i>) model with observations subject to gross errors (outliers). The distribution of outliers is unknown and arbitrary, their intensity is <i>γn</i><sup>−1/2</sup> with an unknown <i>γ</i>, <i>n</i> is the sample size. The autoregression parameters are unknown, they are estimated by any estimator which is <i>n</i><sup>1/2</sup>-consistent uniformly in <i>γ</i> ≤ Γ &lt; ∞. Using the residuals from the estimated autoregression, we construct a kind of empirical distribution function (e.d.f.), which is a counterpart of the (inaccessible) e.d.f. of the autoregression innovations. We obtain a stochastic expansion of this e.d.f., which enables us to construct a test of Pearson’s chi-square type for testing hypotheses about the distribution of innovations. We establish qualitative robustness of this test in terms of uniform equicontinuity of the limiting level with respect to <i>γ</i> in a neighborhood of <i>γ</i> = 0.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the Empirical Distribution Function of Residuals in Autoregression with Outliers and Pearson’s Chi-Square Type Tests\",\"authors\":\"M. V. Boldin, M. N. Petriev\",\"doi\":\"10.3103/s1066530718040038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a stationary linear AR(<i>p</i>) model with observations subject to gross errors (outliers). The distribution of outliers is unknown and arbitrary, their intensity is <i>γn</i><sup>−1/2</sup> with an unknown <i>γ</i>, <i>n</i> is the sample size. The autoregression parameters are unknown, they are estimated by any estimator which is <i>n</i><sup>1/2</sup>-consistent uniformly in <i>γ</i> ≤ Γ &lt; ∞. Using the residuals from the estimated autoregression, we construct a kind of empirical distribution function (e.d.f.), which is a counterpart of the (inaccessible) e.d.f. of the autoregression innovations. We obtain a stochastic expansion of this e.d.f., which enables us to construct a test of Pearson’s chi-square type for testing hypotheses about the distribution of innovations. We establish qualitative robustness of this test in terms of uniform equicontinuity of the limiting level with respect to <i>γ</i> in a neighborhood of <i>γ</i> = 0.\",\"PeriodicalId\":46039,\"journal\":{\"name\":\"Mathematical Methods of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066530718040038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530718040038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

摘要

我们考虑一个平稳的线性AR(p)模型,其观测值受到严重误差(异常值)的影响。异常值的分布是未知的和任意的,其强度为γn - 1/2, γ未知,n为样本量。自回归参数是未知的,它们由任意在γ≤Γ <中一致为n1/2相合的估计量估计;∞。利用估计自回归的残差,我们构造了一种经验分布函数(e.d.f.),它是自回归创新的(不可接近的)e.d.f.的对应物。我们得到了这个e.d.f的随机展开式,这使我们能够构造一个皮尔逊卡方检验来检验关于创新分布的假设。我们在γ = 0的邻域内关于γ的极限水平的一致等连续性方面建立了这个检验的定性稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Empirical Distribution Function of Residuals in Autoregression with Outliers and Pearson’s Chi-Square Type Tests
We consider a stationary linear AR(p) model with observations subject to gross errors (outliers). The distribution of outliers is unknown and arbitrary, their intensity is γn−1/2 with an unknown γ, n is the sample size. The autoregression parameters are unknown, they are estimated by any estimator which is n1/2-consistent uniformly in γ ≤ Γ < ∞. Using the residuals from the estimated autoregression, we construct a kind of empirical distribution function (e.d.f.), which is a counterpart of the (inaccessible) e.d.f. of the autoregression innovations. We obtain a stochastic expansion of this e.d.f., which enables us to construct a test of Pearson’s chi-square type for testing hypotheses about the distribution of innovations. We establish qualitative robustness of this test in terms of uniform equicontinuity of the limiting level with respect to γ in a neighborhood of γ = 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
期刊最新文献
Asymptotic Properties of Extrema of Moving Sums of Independent Non-identically Distributed Variables Stochastic Comparisons of the Smallest Claim Amounts from Two Heterogeneous Portfolios Following Exponentiated Weibull Distribution Estimation of Parameters of Misclassified Size Biased Uniform Poisson Distribution and Its Application Rates of the Strong Uniform Consistency with Rates for Conditional U-Statistics Estimators with General Kernels on Manifolds On Aggregation of Uncensored and Censored Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1