{"title":"考虑粗糙侧接触的弹流润滑界面刚度和阻尼","authors":"Zhiqiang Gao, Yu Zhang, Xian Wei, Yanfang Zhu, Lixia Peng, Weiping Fu, Wen Wang","doi":"10.1007/s10338-023-00441-9","DOIUrl":null,"url":null,"abstract":"<div><p>Elastohydrodynamic lubrication (EHL) point contact occurs between two rough surfaces at the mesoscopic level, while the interaction of rough surfaces involves contact between asperities at the microscale level. In most cases, the contact between asperities within an interface takes the form of lateral contact rather than peak contact. Regions devoid of contact asperities are filled with lubricating oil. However, conventional models often oversimplify lateral contact forms as interactions between asperities and a smooth, rigid plane. These simplifications fail to accurately represent the true contact conditions and can lead to inaccuracies in the analysis of EHL’s contact performance. To address this issue, we have developed a novel EHL interface model comprising two rough surfaces. This model allows us to explore the influence of asperity height, contact angle, and contact azimuth angle on EHL interface performance.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastohydrodynamic Lubrication Interface Stiffness and Damping Considering Asperity Lateral Contact\",\"authors\":\"Zhiqiang Gao, Yu Zhang, Xian Wei, Yanfang Zhu, Lixia Peng, Weiping Fu, Wen Wang\",\"doi\":\"10.1007/s10338-023-00441-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Elastohydrodynamic lubrication (EHL) point contact occurs between two rough surfaces at the mesoscopic level, while the interaction of rough surfaces involves contact between asperities at the microscale level. In most cases, the contact between asperities within an interface takes the form of lateral contact rather than peak contact. Regions devoid of contact asperities are filled with lubricating oil. However, conventional models often oversimplify lateral contact forms as interactions between asperities and a smooth, rigid plane. These simplifications fail to accurately represent the true contact conditions and can lead to inaccuracies in the analysis of EHL’s contact performance. To address this issue, we have developed a novel EHL interface model comprising two rough surfaces. This model allows us to explore the influence of asperity height, contact angle, and contact azimuth angle on EHL interface performance.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-023-00441-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-023-00441-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Elastohydrodynamic Lubrication Interface Stiffness and Damping Considering Asperity Lateral Contact
Elastohydrodynamic lubrication (EHL) point contact occurs between two rough surfaces at the mesoscopic level, while the interaction of rough surfaces involves contact between asperities at the microscale level. In most cases, the contact between asperities within an interface takes the form of lateral contact rather than peak contact. Regions devoid of contact asperities are filled with lubricating oil. However, conventional models often oversimplify lateral contact forms as interactions between asperities and a smooth, rigid plane. These simplifications fail to accurately represent the true contact conditions and can lead to inaccuracies in the analysis of EHL’s contact performance. To address this issue, we have developed a novel EHL interface model comprising two rough surfaces. This model allows us to explore the influence of asperity height, contact angle, and contact azimuth angle on EHL interface performance.