混杂综合控制的辨识与推理

Guido W. Imbens, Davide Viviano
{"title":"混杂综合控制的辨识与推理","authors":"Guido W. Imbens, Davide Viviano","doi":"arxiv-2312.00955","DOIUrl":null,"url":null,"abstract":"This paper studies inference on treatment effects in panel data settings with\nunobserved confounding. We model outcome variables through a factor model with\nrandom factors and loadings. Such factors and loadings may act as unobserved\nconfounders: when the treatment is implemented depends on time-varying factors,\nand who receives the treatment depends on unit-level confounders. We study the\nidentification of treatment effects and illustrate the presence of a trade-off\nbetween time and unit-level confounding. We provide asymptotic results for\ninference for several Synthetic Control estimators and show that different\nsources of randomness should be considered for inference, depending on the\nnature of confounding. We conclude with a comparison of Synthetic Control\nestimators with alternatives for factor models.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"93 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Inference for Synthetic Controls with Confounding\",\"authors\":\"Guido W. Imbens, Davide Viviano\",\"doi\":\"arxiv-2312.00955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies inference on treatment effects in panel data settings with\\nunobserved confounding. We model outcome variables through a factor model with\\nrandom factors and loadings. Such factors and loadings may act as unobserved\\nconfounders: when the treatment is implemented depends on time-varying factors,\\nand who receives the treatment depends on unit-level confounders. We study the\\nidentification of treatment effects and illustrate the presence of a trade-off\\nbetween time and unit-level confounding. We provide asymptotic results for\\ninference for several Synthetic Control estimators and show that different\\nsources of randomness should be considered for inference, depending on the\\nnature of confounding. We conclude with a comparison of Synthetic Control\\nestimators with alternatives for factor models.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"93 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.00955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在未观察到的混杂情况下面板数据设置对治疗效果的推断。我们通过一个带有随机因素和负荷的因子模型来模拟结果变量。这些因素和负荷可能作为未观察到的混杂因素:何时实施治疗取决于时变因素,谁接受治疗取决于单位水平的混杂因素。我们研究了治疗效果的识别,并说明了时间和单位水平混杂之间的权衡。我们提供了几个综合控制估计的渐近推断结果,并表明根据混杂的性质,应该考虑不同的随机性来源。最后,我们比较了综合控制估计器与替代因子模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification and Inference for Synthetic Controls with Confounding
This paper studies inference on treatment effects in panel data settings with unobserved confounding. We model outcome variables through a factor model with random factors and loadings. Such factors and loadings may act as unobserved confounders: when the treatment is implemented depends on time-varying factors, and who receives the treatment depends on unit-level confounders. We study the identification of treatment effects and illustrate the presence of a trade-off between time and unit-level confounding. We provide asymptotic results for inference for several Synthetic Control estimators and show that different sources of randomness should be considered for inference, depending on the nature of confounding. We conclude with a comparison of Synthetic Control estimators with alternatives for factor models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1