逆Robin问题的贝叶斯方法

Aksel Kaastrup Rasmussen, Fanny Seizilles, Mark Girolami, Ieva Kazlauskaite
{"title":"逆Robin问题的贝叶斯方法","authors":"Aksel Kaastrup Rasmussen, Fanny Seizilles, Mark Girolami, Ieva Kazlauskaite","doi":"arxiv-2311.17542","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the Bayesian approach to inverse Robin problems.\nThese are problems for certain elliptic boundary value problems of determining\na Robin coefficient on a hidden part of the boundary from Cauchy data on the\nobservable part. Such a nonlinear inverse problem arises naturally in the\ninitialisation of large-scale ice sheet models that are crucial in climate and\nsea-level predictions. We motivate the Bayesian approach for a prototypical\nRobin inverse problem by showing that the posterior mean converges in\nprobability to the data-generating ground truth as the number of observations\nincreases. Related to the stability theory for inverse Robin problems, we\nestablish a logarithmic convergence rate for Sobolev-regular Robin\ncoefficients, whereas for analytic coefficients we can attain an algebraic\nrate. The use of rescaled analytic Gaussian priors in posterior consistency for\nnonlinear inverse problems is new and may be of separate interest in other\ninverse problems. Our numerical results illustrate the convergence property in\ntwo observation settings.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"91 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Bayesian approach to inverse Robin problems\",\"authors\":\"Aksel Kaastrup Rasmussen, Fanny Seizilles, Mark Girolami, Ieva Kazlauskaite\",\"doi\":\"arxiv-2311.17542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the Bayesian approach to inverse Robin problems.\\nThese are problems for certain elliptic boundary value problems of determining\\na Robin coefficient on a hidden part of the boundary from Cauchy data on the\\nobservable part. Such a nonlinear inverse problem arises naturally in the\\ninitialisation of large-scale ice sheet models that are crucial in climate and\\nsea-level predictions. We motivate the Bayesian approach for a prototypical\\nRobin inverse problem by showing that the posterior mean converges in\\nprobability to the data-generating ground truth as the number of observations\\nincreases. Related to the stability theory for inverse Robin problems, we\\nestablish a logarithmic convergence rate for Sobolev-regular Robin\\ncoefficients, whereas for analytic coefficients we can attain an algebraic\\nrate. The use of rescaled analytic Gaussian priors in posterior consistency for\\nnonlinear inverse problems is new and may be of separate interest in other\\ninverse problems. Our numerical results illustrate the convergence property in\\ntwo observation settings.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"91 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.17542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.17542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了逆Robin问题的贝叶斯方法。这是用可观测部分的柯西数据确定边界隐藏部分的罗宾系数的椭圆边值问题。这种非线性逆问题在大尺度冰盖模型的初始化中自然出现,而大尺度冰盖模型对气候和海平面的预测至关重要。我们通过表明随着观测数量的增加,后验均值不概率地收敛于数据生成的基础真值,从而激发了典型robin反问题的贝叶斯方法。结合逆Robin问题的稳定性理论,我们建立了sobolev -正则Robin系数的对数收敛速率,而对于解析系数,我们可以得到一个代数的收敛速率。在非线性逆问题的后验一致性中使用重标解析高斯先验是一种新的方法,在其他逆问题中可能会有单独的兴趣。我们的数值结果说明了在两种观测条件下的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Bayesian approach to inverse Robin problems
In this paper we investigate the Bayesian approach to inverse Robin problems. These are problems for certain elliptic boundary value problems of determining a Robin coefficient on a hidden part of the boundary from Cauchy data on the observable part. Such a nonlinear inverse problem arises naturally in the initialisation of large-scale ice sheet models that are crucial in climate and sea-level predictions. We motivate the Bayesian approach for a prototypical Robin inverse problem by showing that the posterior mean converges in probability to the data-generating ground truth as the number of observations increases. Related to the stability theory for inverse Robin problems, we establish a logarithmic convergence rate for Sobolev-regular Robin coefficients, whereas for analytic coefficients we can attain an algebraic rate. The use of rescaled analytic Gaussian priors in posterior consistency for nonlinear inverse problems is new and may be of separate interest in other inverse problems. Our numerical results illustrate the convergence property in two observation settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1