袋化正则化$k$-距离异常检测

Yuchao Cai, Yuheng Ma, Hanfang Yang, Hanyuan Hang
{"title":"袋化正则化$k$-距离异常检测","authors":"Yuchao Cai, Yuheng Ma, Hanfang Yang, Hanyuan Hang","doi":"arxiv-2312.01046","DOIUrl":null,"url":null,"abstract":"We consider the paradigm of unsupervised anomaly detection, which involves\nthe identification of anomalies within a dataset in the absence of labeled\nexamples. Though distance-based methods are top-performing for unsupervised\nanomaly detection, they suffer heavily from the sensitivity to the choice of\nthe number of the nearest neighbors. In this paper, we propose a new\ndistance-based algorithm called bagged regularized $k$-distances for anomaly\ndetection (BRDAD) converting the unsupervised anomaly detection problem into a\nconvex optimization problem. Our BRDAD algorithm selects the weights by\nminimizing the surrogate risk, i.e., the finite sample bound of the empirical\nrisk of the bagged weighted $k$-distances for density estimation (BWDDE). This\napproach enables us to successfully address the sensitivity challenge of the\nhyperparameter choice in distance-based algorithms. Moreover, when dealing with\nlarge-scale datasets, the efficiency issues can be addressed by the\nincorporated bagging technique in our BRDAD algorithm. On the theoretical side,\nwe establish fast convergence rates of the AUC regret of our algorithm and\ndemonstrate that the bagging technique significantly reduces the computational\ncomplexity. On the practical side, we conduct numerical experiments on anomaly\ndetection benchmarks to illustrate the insensitivity of parameter selection of\nour algorithm compared with other state-of-the-art distance-based methods.\nMoreover, promising improvements are brought by applying the bagging technique\nin our algorithm on real-world datasets.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"88 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bagged Regularized $k$-Distances for Anomaly Detection\",\"authors\":\"Yuchao Cai, Yuheng Ma, Hanfang Yang, Hanyuan Hang\",\"doi\":\"arxiv-2312.01046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the paradigm of unsupervised anomaly detection, which involves\\nthe identification of anomalies within a dataset in the absence of labeled\\nexamples. Though distance-based methods are top-performing for unsupervised\\nanomaly detection, they suffer heavily from the sensitivity to the choice of\\nthe number of the nearest neighbors. In this paper, we propose a new\\ndistance-based algorithm called bagged regularized $k$-distances for anomaly\\ndetection (BRDAD) converting the unsupervised anomaly detection problem into a\\nconvex optimization problem. Our BRDAD algorithm selects the weights by\\nminimizing the surrogate risk, i.e., the finite sample bound of the empirical\\nrisk of the bagged weighted $k$-distances for density estimation (BWDDE). This\\napproach enables us to successfully address the sensitivity challenge of the\\nhyperparameter choice in distance-based algorithms. Moreover, when dealing with\\nlarge-scale datasets, the efficiency issues can be addressed by the\\nincorporated bagging technique in our BRDAD algorithm. On the theoretical side,\\nwe establish fast convergence rates of the AUC regret of our algorithm and\\ndemonstrate that the bagging technique significantly reduces the computational\\ncomplexity. On the practical side, we conduct numerical experiments on anomaly\\ndetection benchmarks to illustrate the insensitivity of parameter selection of\\nour algorithm compared with other state-of-the-art distance-based methods.\\nMoreover, promising improvements are brought by applying the bagging technique\\nin our algorithm on real-world datasets.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"88 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.01046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.01046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑无监督异常检测的范例,它涉及在没有标记示例的情况下识别数据集中的异常。尽管基于距离的方法在无监督异常检测中表现最好,但它们对最近邻居数量选择的敏感性很大。在本文中,我们提出了一种新的基于距离的算法,称为bagged正则化$k$-距离异常检测(BRDAD),将无监督异常检测问题转化为凸优化问题。我们的BRDAD算法通过最小化代理风险来选择权重,即密度估计(BWDDE)的加权距离的经验风险的有限样本界。这种方法使我们能够成功地解决基于距离的算法中超参数选择的敏感性挑战。此外,当处理大规模数据集时,我们的BRDAD算法中结合的bagging技术可以解决效率问题。在理论方面,我们建立了我们算法的AUC遗憾的快速收敛速率,并证明了bagging技术显着降低了计算复杂度。在实践方面,我们在异常检测基准上进行了数值实验,以说明与其他最先进的基于距离的方法相比,我们的算法的参数选择不敏感。此外,将bagging技术应用于实际数据集的算法也带来了有希望的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bagged Regularized $k$-Distances for Anomaly Detection
We consider the paradigm of unsupervised anomaly detection, which involves the identification of anomalies within a dataset in the absence of labeled examples. Though distance-based methods are top-performing for unsupervised anomaly detection, they suffer heavily from the sensitivity to the choice of the number of the nearest neighbors. In this paper, we propose a new distance-based algorithm called bagged regularized $k$-distances for anomaly detection (BRDAD) converting the unsupervised anomaly detection problem into a convex optimization problem. Our BRDAD algorithm selects the weights by minimizing the surrogate risk, i.e., the finite sample bound of the empirical risk of the bagged weighted $k$-distances for density estimation (BWDDE). This approach enables us to successfully address the sensitivity challenge of the hyperparameter choice in distance-based algorithms. Moreover, when dealing with large-scale datasets, the efficiency issues can be addressed by the incorporated bagging technique in our BRDAD algorithm. On the theoretical side, we establish fast convergence rates of the AUC regret of our algorithm and demonstrate that the bagging technique significantly reduces the computational complexity. On the practical side, we conduct numerical experiments on anomaly detection benchmarks to illustrate the insensitivity of parameter selection of our algorithm compared with other state-of-the-art distance-based methods. Moreover, promising improvements are brought by applying the bagging technique in our algorithm on real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1