具有未知异方差的近最优均值估计

Spencer Compton, Gregory Valiant
{"title":"具有未知异方差的近最优均值估计","authors":"Spencer Compton, Gregory Valiant","doi":"arxiv-2312.02417","DOIUrl":null,"url":null,"abstract":"Given data drawn from a collection of Gaussian variables with a common mean\nbut different and unknown variances, what is the best algorithm for estimating\ntheir common mean? We present an intuitive and efficient algorithm for this\ntask. As different closed-form guarantees can be hard to compare, the\nSubset-of-Signals model serves as a benchmark for heteroskedastic mean\nestimation: given $n$ Gaussian variables with an unknown subset of $m$\nvariables having variance bounded by 1, what is the optimal estimation error as\na function of $n$ and $m$? Our algorithm resolves this open question up to\nlogarithmic factors, improving upon the previous best known estimation error by\npolynomial factors when $m = n^c$ for all $0<c<1$. Of particular note, we\nobtain error $o(1)$ with $m = \\tilde{O}(n^{1/4})$ variance-bounded samples,\nwhereas previous work required $m = \\tilde{\\Omega}(n^{1/2})$. Finally, we show\nthat in the multi-dimensional setting, even for $d=2$, our techniques enable\nrates comparable to knowing the variance of each sample.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"87 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances\",\"authors\":\"Spencer Compton, Gregory Valiant\",\"doi\":\"arxiv-2312.02417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given data drawn from a collection of Gaussian variables with a common mean\\nbut different and unknown variances, what is the best algorithm for estimating\\ntheir common mean? We present an intuitive and efficient algorithm for this\\ntask. As different closed-form guarantees can be hard to compare, the\\nSubset-of-Signals model serves as a benchmark for heteroskedastic mean\\nestimation: given $n$ Gaussian variables with an unknown subset of $m$\\nvariables having variance bounded by 1, what is the optimal estimation error as\\na function of $n$ and $m$? Our algorithm resolves this open question up to\\nlogarithmic factors, improving upon the previous best known estimation error by\\npolynomial factors when $m = n^c$ for all $0<c<1$. Of particular note, we\\nobtain error $o(1)$ with $m = \\\\tilde{O}(n^{1/4})$ variance-bounded samples,\\nwhereas previous work required $m = \\\\tilde{\\\\Omega}(n^{1/2})$. Finally, we show\\nthat in the multi-dimensional setting, even for $d=2$, our techniques enable\\nrates comparable to knowing the variance of each sample.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"87 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定从高斯变量集合中提取的数据,这些变量具有共同的平均值,但方差不同且未知,那么估计它们的共同平均值的最佳算法是什么?我们提出了一种直观有效的算法。由于不同的封闭形式保证很难比较,信号子集模型作为异方差均值估计的基准:给定$n$高斯变量与未知的$m$变量子集,其方差以1为界,作为$n$和$m$的函数,最优估计误差是什么?我们的算法通过拓扑因素解决了这个开放的问题,当$m = n^c$对于所有$0本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances
Given data drawn from a collection of Gaussian variables with a common mean but different and unknown variances, what is the best algorithm for estimating their common mean? We present an intuitive and efficient algorithm for this task. As different closed-form guarantees can be hard to compare, the Subset-of-Signals model serves as a benchmark for heteroskedastic mean estimation: given $n$ Gaussian variables with an unknown subset of $m$ variables having variance bounded by 1, what is the optimal estimation error as a function of $n$ and $m$? Our algorithm resolves this open question up to logarithmic factors, improving upon the previous best known estimation error by polynomial factors when $m = n^c$ for all $0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1