功能平均治疗效果

Shane Sparkes, Erika Garcia, Lu Zhang
{"title":"功能平均治疗效果","authors":"Shane Sparkes, Erika Garcia, Lu Zhang","doi":"arxiv-2312.00219","DOIUrl":null,"url":null,"abstract":"This paper establishes the functional average as an important estimand for\ncausal inference. The significance of the estimand lies in its robustness\nagainst traditional issues of confounding. We prove that this robustness holds\neven when the probability distribution of the outcome, conditional on treatment\nor some other vector of adjusting variables, differs almost arbitrarily from\nits counterfactual analogue. This paper also examines possible estimators of\nthe functional average, including the sample mid-range, and proposes a new type\nof bootstrap for robust statistical inference: the Hoeffding bootstrap. After\nthis, the paper explores a new class of variables, the $\\mathcal{U}$ class of\nvariables, that simplifies the estimation of functional averages. This class of\nvariables is also used to establish mean exchangeability in some cases and to\nprovide the results of elementary statistical procedures, such as linear\nregression and the analysis of variance, with causal interpretations.\nSimulation evidence is provided. The methods of this paper are also applied to\na National Health and Nutrition Survey data set to investigate the causal\neffect of exercise on the blood pressure of adult smokers.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Functional Average Treatment Effect\",\"authors\":\"Shane Sparkes, Erika Garcia, Lu Zhang\",\"doi\":\"arxiv-2312.00219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes the functional average as an important estimand for\\ncausal inference. The significance of the estimand lies in its robustness\\nagainst traditional issues of confounding. We prove that this robustness holds\\neven when the probability distribution of the outcome, conditional on treatment\\nor some other vector of adjusting variables, differs almost arbitrarily from\\nits counterfactual analogue. This paper also examines possible estimators of\\nthe functional average, including the sample mid-range, and proposes a new type\\nof bootstrap for robust statistical inference: the Hoeffding bootstrap. After\\nthis, the paper explores a new class of variables, the $\\\\mathcal{U}$ class of\\nvariables, that simplifies the estimation of functional averages. This class of\\nvariables is also used to establish mean exchangeability in some cases and to\\nprovide the results of elementary statistical procedures, such as linear\\nregression and the analysis of variance, with causal interpretations.\\nSimulation evidence is provided. The methods of this paper are also applied to\\na National Health and Nutrition Survey data set to investigate the causal\\neffect of exercise on the blood pressure of adult smokers.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.00219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了函数平均作为因果推理的一个重要估计。该估计的意义在于它对传统的混淆问题具有鲁棒性。我们证明,当结果的概率分布,条件是处理一些其他的调整变量向量,几乎任意地不同于反事实模拟时,这种鲁棒性是成立的。本文还研究了函数平均的可能估计量,包括样本中程,并提出了一种用于稳健统计推断的新类型的自举:Hoeffding自举。在此之后,本文探讨了一类新的变量,$\mathcal{U}$类变量,它简化了函数平均的估计。在某些情况下,这类变量也被用来建立平均互换性,并提供基本统计程序的结果,如线性回归和方差分析,以及因果解释。给出了仿真证据。本文的方法还应用于国家健康与营养调查数据集,以调查运动对成年吸烟者血压的因果关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Functional Average Treatment Effect
This paper establishes the functional average as an important estimand for causal inference. The significance of the estimand lies in its robustness against traditional issues of confounding. We prove that this robustness holds even when the probability distribution of the outcome, conditional on treatment or some other vector of adjusting variables, differs almost arbitrarily from its counterfactual analogue. This paper also examines possible estimators of the functional average, including the sample mid-range, and proposes a new type of bootstrap for robust statistical inference: the Hoeffding bootstrap. After this, the paper explores a new class of variables, the $\mathcal{U}$ class of variables, that simplifies the estimation of functional averages. This class of variables is also used to establish mean exchangeability in some cases and to provide the results of elementary statistical procedures, such as linear regression and the analysis of variance, with causal interpretations. Simulation evidence is provided. The methods of this paper are also applied to a National Health and Nutrition Survey data set to investigate the causal effect of exercise on the blood pressure of adult smokers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1