寻找完美的拟合:解释,灵活的建模,以及正态分布的现有概括

Andriette Bekker, Matthias Wagener, Muhammad Arashi
{"title":"寻找完美的拟合:解释,灵活的建模,以及正态分布的现有概括","authors":"Andriette Bekker, Matthias Wagener, Muhammad Arashi","doi":"arxiv-2311.17962","DOIUrl":null,"url":null,"abstract":"Many generalised distributions exist for modelling data with vastly diverse\ncharacteristics. However, very few of these generalisations of the normal\ndistribution have shape parameters with clear roles that determine, for\ninstance, skewness and tail shape. In this chapter, we review existing skewing\nmechanisms and their properties in detail. Using the knowledge acquired, we add\na skewness parameter to the body-tail generalised normal distribution\n\\cite{BTGN}, that yields the \\ac{FIN} with parameters for location, scale,\nbody-shape, skewness, and tail weight. Basic statistical properties of the\n\\ac{FIN} are provided, such as the \\ac{PDF}, cumulative distribution function,\nmoments, and likelihood equations. Additionally, the \\ac{FIN} \\ac{PDF} is\nextended to a multivariate setting using a student t-copula, yielding the\n\\ac{MFIN}. The \\ac{MFIN} is applied to stock returns data, where it outperforms\nthe t-copula multivariate generalised hyperbolic, Azzalini skew-t, hyperbolic,\nand normal inverse Gaussian distributions.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"85 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In search of the perfect fit: interpretation, flexible modelling, and the existing generalisations of the normal distribution\",\"authors\":\"Andriette Bekker, Matthias Wagener, Muhammad Arashi\",\"doi\":\"arxiv-2311.17962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many generalised distributions exist for modelling data with vastly diverse\\ncharacteristics. However, very few of these generalisations of the normal\\ndistribution have shape parameters with clear roles that determine, for\\ninstance, skewness and tail shape. In this chapter, we review existing skewing\\nmechanisms and their properties in detail. Using the knowledge acquired, we add\\na skewness parameter to the body-tail generalised normal distribution\\n\\\\cite{BTGN}, that yields the \\\\ac{FIN} with parameters for location, scale,\\nbody-shape, skewness, and tail weight. Basic statistical properties of the\\n\\\\ac{FIN} are provided, such as the \\\\ac{PDF}, cumulative distribution function,\\nmoments, and likelihood equations. Additionally, the \\\\ac{FIN} \\\\ac{PDF} is\\nextended to a multivariate setting using a student t-copula, yielding the\\n\\\\ac{MFIN}. The \\\\ac{MFIN} is applied to stock returns data, where it outperforms\\nthe t-copula multivariate generalised hyperbolic, Azzalini skew-t, hyperbolic,\\nand normal inverse Gaussian distributions.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"85 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.17962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.17962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

存在许多广义分布,用于建模具有大量不同特征的数据。然而,很少有正态分布的这些概括具有具有明确作用的形状参数,例如,决定偏度和尾部形状。在本章中,我们详细回顾了现有的偏斜机制及其性质。利用所获得的知识,我们将偏度参数添加到体尾广义正态分布\cite{BTGN}中,从而得到包含位置、规模、体型、偏度和尾重参数的\ac{FIN}。提供了\ac{FIN}的基本统计特性,如\ac{PDF}、累积分布函数、矩和似然方程。此外,使用学生t-copula将\ac{FIN}\ac{PDF}扩展到多变量设置,从而得到\ac{MFIN}。\ac{MFIN}应用于股票收益数据,它优于t-copula多元广义双曲分布、Azzalini偏t分布、双曲分布和正态反高斯分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In search of the perfect fit: interpretation, flexible modelling, and the existing generalisations of the normal distribution
Many generalised distributions exist for modelling data with vastly diverse characteristics. However, very few of these generalisations of the normal distribution have shape parameters with clear roles that determine, for instance, skewness and tail shape. In this chapter, we review existing skewing mechanisms and their properties in detail. Using the knowledge acquired, we add a skewness parameter to the body-tail generalised normal distribution \cite{BTGN}, that yields the \ac{FIN} with parameters for location, scale, body-shape, skewness, and tail weight. Basic statistical properties of the \ac{FIN} are provided, such as the \ac{PDF}, cumulative distribution function, moments, and likelihood equations. Additionally, the \ac{FIN} \ac{PDF} is extended to a multivariate setting using a student t-copula, yielding the \ac{MFIN}. The \ac{MFIN} is applied to stock returns data, where it outperforms the t-copula multivariate generalised hyperbolic, Azzalini skew-t, hyperbolic, and normal inverse Gaussian distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1