最快的变化检测与后变化密度估计

Yuchen Liang, Venugopal V. Veeravalli
{"title":"最快的变化检测与后变化密度估计","authors":"Yuchen Liang, Venugopal V. Veeravalli","doi":"arxiv-2311.15128","DOIUrl":null,"url":null,"abstract":"The problem of quickest change detection in a sequence of independent\nobservations is considered. The pre-change distribution is assumed to be known,\nwhile the post-change distribution is unknown. Two tests based on post-change\ndensity estimation are developed for this problem, the window-limited\nnon-parametric generalized likelihood ratio (NGLR) CuSum test and the\nnon-parametric window-limited adaptive (NWLA) CuSum test. Both tests do not\nassume any knowledge of the post-change distribution, except that the\npost-change density satisfies certain smoothness conditions that allows for\nefficient non-parametric estimation. Also, they do not require any\npre-collected post-change training samples. Under certain convergence\nconditions on the density estimator, it is shown that both tests are\nfirst-order asymptotically optimal, as the false alarm rate goes to zero. The\nanalysis is validated through numerical results, where both tests are compared\nwith baseline tests that have distributional knowledge.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"83 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quickest Change Detection with Post-Change Density Estimation\",\"authors\":\"Yuchen Liang, Venugopal V. Veeravalli\",\"doi\":\"arxiv-2311.15128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of quickest change detection in a sequence of independent\\nobservations is considered. The pre-change distribution is assumed to be known,\\nwhile the post-change distribution is unknown. Two tests based on post-change\\ndensity estimation are developed for this problem, the window-limited\\nnon-parametric generalized likelihood ratio (NGLR) CuSum test and the\\nnon-parametric window-limited adaptive (NWLA) CuSum test. Both tests do not\\nassume any knowledge of the post-change distribution, except that the\\npost-change density satisfies certain smoothness conditions that allows for\\nefficient non-parametric estimation. Also, they do not require any\\npre-collected post-change training samples. Under certain convergence\\nconditions on the density estimator, it is shown that both tests are\\nfirst-order asymptotically optimal, as the false alarm rate goes to zero. The\\nanalysis is validated through numerical results, where both tests are compared\\nwith baseline tests that have distributional knowledge.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"83 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.15128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.15128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了独立观测序列中最快速的变化检测问题。假设变更前的分布是已知的,而变更后的分布是未知的。针对这一问题,提出了基于变后密度估计的两种检验方法:限窗非参数广义似然比(NGLR) CuSum检验和非参数限窗自适应(NWLA) CuSum检验。这两个测试都不假设对变化后的分布有任何了解,除非变化后的密度满足一定的平滑条件,允许有效的非参数估计。此外,它们不需要预先收集任何更改后的训练样本。在密度估计量的一定收敛条件下,当虚警率趋于零时,两个检验都是一阶渐近最优的。通过数值结果验证了该分析,其中两个测试都与具有分布知识的基线测试进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quickest Change Detection with Post-Change Density Estimation
The problem of quickest change detection in a sequence of independent observations is considered. The pre-change distribution is assumed to be known, while the post-change distribution is unknown. Two tests based on post-change density estimation are developed for this problem, the window-limited non-parametric generalized likelihood ratio (NGLR) CuSum test and the non-parametric window-limited adaptive (NWLA) CuSum test. Both tests do not assume any knowledge of the post-change distribution, except that the post-change density satisfies certain smoothness conditions that allows for efficient non-parametric estimation. Also, they do not require any pre-collected post-change training samples. Under certain convergence conditions on the density estimator, it is shown that both tests are first-order asymptotically optimal, as the false alarm rate goes to zero. The analysis is validated through numerical results, where both tests are compared with baseline tests that have distributional knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1