{"title":"GPT4-V构建的数字眼科医生应用评估(视觉)","authors":"Pusheng Xu, Xiaolan Chen, Ziwei Zhao, Yingfeng Zheng, Guangming Jin, Danli Shi, Mingguang He","doi":"10.1101/2023.11.27.23299056","DOIUrl":null,"url":null,"abstract":"Backgrounds: GPT4-V(ision) has generated great interest across various fields, while its performance in ocular multimodal images is still unknown. This study aims to evaluate the capabilities of a GPT-4V-based chatbot in addressing queries related to ocular multimodal images.\nMethods: A digital ophthalmologist app was built based on GPT-4V. The evaluation dataset comprised various ocular imaging modalities: slit-lamp, scanning laser ophthalmoscopy (SLO), fundus photography of the posterior pole (FPP), optical coherence tomography (OCT), fundus fluorescein angiography (FFA), and ocular ultrasound (OUS). Each modality included images representing 5 common and 5 rare diseases. The chatbot was presented with ten questions per image, focusing on examination identification, lesion detection, diagnosis, decision support, and the repeatability of diagnosis. The responses of GPT-4V were evaluated based on accuracy, usability, and safety.\nResults: There was a substantial agreement among three ophthalmologists. Out of 600 responses,30.5% were accurate,22.8% of 540 responses were highly usable, and 55.5% of 540 responses were considered safe by ophthalmologists. The chatbot excelled in interpreting slit-lamp images, with 42.0%,42.2%, and 68.5% of the responses being accurate, highly usable, and no harm, respectively. However, its performance was notably weaker in FPP images, with only 13.7%,3.7%, and 38.5% in the same categories. It correctly identified 95.6% of the imaging modalities. For lesion identification, diagnosis, and decision support, the chatbot's accuracy was 25.6%,16.1%, and 24.0%, respectively. The average proportions of correct answers, highly usable, and no harm for GPT-4V in common diseases were 37.9%,30.5%, and 60.1%, respectively. These proportions were all higher compared to those in rare diseases, which were 23.2% (P<0.001),15.2% (P<0.001), and 51.1% (P=0.032), respectively. The overall repeatability of GPT4-V in diagnosing ocular images was 63% (38/60). Conclusion: Currently, GPT-4V lacks the reliability required for clinical decision-making and patient consultation in ophthalmology. Ongoing refinement and testing are essential for improving the efficacy of large language models in medical applications.","PeriodicalId":501390,"journal":{"name":"medRxiv - Ophthalmology","volume":"11 3-4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a digital ophthalmologist app built by GPT4-V(ision)\",\"authors\":\"Pusheng Xu, Xiaolan Chen, Ziwei Zhao, Yingfeng Zheng, Guangming Jin, Danli Shi, Mingguang He\",\"doi\":\"10.1101/2023.11.27.23299056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backgrounds: GPT4-V(ision) has generated great interest across various fields, while its performance in ocular multimodal images is still unknown. This study aims to evaluate the capabilities of a GPT-4V-based chatbot in addressing queries related to ocular multimodal images.\\nMethods: A digital ophthalmologist app was built based on GPT-4V. The evaluation dataset comprised various ocular imaging modalities: slit-lamp, scanning laser ophthalmoscopy (SLO), fundus photography of the posterior pole (FPP), optical coherence tomography (OCT), fundus fluorescein angiography (FFA), and ocular ultrasound (OUS). Each modality included images representing 5 common and 5 rare diseases. The chatbot was presented with ten questions per image, focusing on examination identification, lesion detection, diagnosis, decision support, and the repeatability of diagnosis. The responses of GPT-4V were evaluated based on accuracy, usability, and safety.\\nResults: There was a substantial agreement among three ophthalmologists. Out of 600 responses,30.5% were accurate,22.8% of 540 responses were highly usable, and 55.5% of 540 responses were considered safe by ophthalmologists. The chatbot excelled in interpreting slit-lamp images, with 42.0%,42.2%, and 68.5% of the responses being accurate, highly usable, and no harm, respectively. However, its performance was notably weaker in FPP images, with only 13.7%,3.7%, and 38.5% in the same categories. It correctly identified 95.6% of the imaging modalities. For lesion identification, diagnosis, and decision support, the chatbot's accuracy was 25.6%,16.1%, and 24.0%, respectively. The average proportions of correct answers, highly usable, and no harm for GPT-4V in common diseases were 37.9%,30.5%, and 60.1%, respectively. These proportions were all higher compared to those in rare diseases, which were 23.2% (P<0.001),15.2% (P<0.001), and 51.1% (P=0.032), respectively. The overall repeatability of GPT4-V in diagnosing ocular images was 63% (38/60). Conclusion: Currently, GPT-4V lacks the reliability required for clinical decision-making and patient consultation in ophthalmology. Ongoing refinement and testing are essential for improving the efficacy of large language models in medical applications.\",\"PeriodicalId\":501390,\"journal\":{\"name\":\"medRxiv - Ophthalmology\",\"volume\":\"11 3-4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Ophthalmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.27.23299056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.27.23299056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of a digital ophthalmologist app built by GPT4-V(ision)
Backgrounds: GPT4-V(ision) has generated great interest across various fields, while its performance in ocular multimodal images is still unknown. This study aims to evaluate the capabilities of a GPT-4V-based chatbot in addressing queries related to ocular multimodal images.
Methods: A digital ophthalmologist app was built based on GPT-4V. The evaluation dataset comprised various ocular imaging modalities: slit-lamp, scanning laser ophthalmoscopy (SLO), fundus photography of the posterior pole (FPP), optical coherence tomography (OCT), fundus fluorescein angiography (FFA), and ocular ultrasound (OUS). Each modality included images representing 5 common and 5 rare diseases. The chatbot was presented with ten questions per image, focusing on examination identification, lesion detection, diagnosis, decision support, and the repeatability of diagnosis. The responses of GPT-4V were evaluated based on accuracy, usability, and safety.
Results: There was a substantial agreement among three ophthalmologists. Out of 600 responses,30.5% were accurate,22.8% of 540 responses were highly usable, and 55.5% of 540 responses were considered safe by ophthalmologists. The chatbot excelled in interpreting slit-lamp images, with 42.0%,42.2%, and 68.5% of the responses being accurate, highly usable, and no harm, respectively. However, its performance was notably weaker in FPP images, with only 13.7%,3.7%, and 38.5% in the same categories. It correctly identified 95.6% of the imaging modalities. For lesion identification, diagnosis, and decision support, the chatbot's accuracy was 25.6%,16.1%, and 24.0%, respectively. The average proportions of correct answers, highly usable, and no harm for GPT-4V in common diseases were 37.9%,30.5%, and 60.1%, respectively. These proportions were all higher compared to those in rare diseases, which were 23.2% (P<0.001),15.2% (P<0.001), and 51.1% (P=0.032), respectively. The overall repeatability of GPT4-V in diagnosing ocular images was 63% (38/60). Conclusion: Currently, GPT-4V lacks the reliability required for clinical decision-making and patient consultation in ophthalmology. Ongoing refinement and testing are essential for improving the efficacy of large language models in medical applications.