如何使用自然语言处理进行有效和客观的文献综述:营销研究人员的一步一步指南

Serena Pugliese, Verdiana Giannetti, Sourindra Banerjee
{"title":"如何使用自然语言处理进行有效和客观的文献综述:营销研究人员的一步一步指南","authors":"Serena Pugliese, Verdiana Giannetti, Sourindra Banerjee","doi":"10.1002/mar.21931","DOIUrl":null,"url":null,"abstract":"Literature reviews are crucial for attaining a full understanding of the key topics and latest trends in research and instrumental in identifying important research gaps. Unfortunately, conducting literature reviews can be time-consuming, and the outcomes are frequently subjective. Hence, to address such limitations, we detail an alternative, recent approach to conducting literature reviews. In this research, we outline the steps involved in conducting a literature review via natural language processing. Specifically, we illustrate how to (1) select relevant papers using term frequency-inverse document frequency and (2) perform topic modeling analysis through latent Dirichlet allocation to identify key research topics. This study and the associated ready-to-use Python code provide researchers, including those in consumer behavior, with detailed guidance on how to use natural language processing in their literature reviews.","PeriodicalId":501349,"journal":{"name":"Psychology and Marketing","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to conduct efficient and objective literature reviews using natural language processing: A step-by-step guide for marketing researchers\",\"authors\":\"Serena Pugliese, Verdiana Giannetti, Sourindra Banerjee\",\"doi\":\"10.1002/mar.21931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Literature reviews are crucial for attaining a full understanding of the key topics and latest trends in research and instrumental in identifying important research gaps. Unfortunately, conducting literature reviews can be time-consuming, and the outcomes are frequently subjective. Hence, to address such limitations, we detail an alternative, recent approach to conducting literature reviews. In this research, we outline the steps involved in conducting a literature review via natural language processing. Specifically, we illustrate how to (1) select relevant papers using term frequency-inverse document frequency and (2) perform topic modeling analysis through latent Dirichlet allocation to identify key research topics. This study and the associated ready-to-use Python code provide researchers, including those in consumer behavior, with detailed guidance on how to use natural language processing in their literature reviews.\",\"PeriodicalId\":501349,\"journal\":{\"name\":\"Psychology and Marketing\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychology and Marketing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/mar.21931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychology and Marketing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mar.21931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文献综述对于充分了解研究的关键主题和最新趋势至关重要,有助于确定重要的研究差距。不幸的是,进行文献综述可能很耗时,而且结果往往是主观的。因此,为了解决这样的限制,我们详细介绍了一种替代的,最近的方法来进行文献综述。在本研究中,我们概述了通过自然语言处理进行文献综述的步骤。具体而言,我们说明了如何(1)使用术语频率-逆文档频率选择相关论文;(2)通过潜在狄利克雷分配进行主题建模分析,以确定关键研究主题。这项研究和相关的现成Python代码为研究人员(包括消费者行为研究人员)提供了如何在其文献综述中使用自然语言处理的详细指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to conduct efficient and objective literature reviews using natural language processing: A step-by-step guide for marketing researchers
Literature reviews are crucial for attaining a full understanding of the key topics and latest trends in research and instrumental in identifying important research gaps. Unfortunately, conducting literature reviews can be time-consuming, and the outcomes are frequently subjective. Hence, to address such limitations, we detail an alternative, recent approach to conducting literature reviews. In this research, we outline the steps involved in conducting a literature review via natural language processing. Specifically, we illustrate how to (1) select relevant papers using term frequency-inverse document frequency and (2) perform topic modeling analysis through latent Dirichlet allocation to identify key research topics. This study and the associated ready-to-use Python code provide researchers, including those in consumer behavior, with detailed guidance on how to use natural language processing in their literature reviews.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vibrotactile feedback in m-commerce: Stimulating perceived control and perceived ownership to increase anticipated satisfaction First come, first served versus the draw: Perceived fairness in the new product purchase competition The social side of color: How social exclusion influences preferences for color combination Promoting organ donation through philanthropic partnerships Social media marketing activities, customer engagement, and customer stickiness: A longitudinal investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1