高通量资产定价

Andrew Y. Chen, Chukwuma Dim
{"title":"高通量资产定价","authors":"Andrew Y. Chen, Chukwuma Dim","doi":"arxiv-2311.10685","DOIUrl":null,"url":null,"abstract":"We use empirical Bayes (EB) to mine for out-of-sample returns among 73,108\nlong-short strategies constructed from accounting ratios, past returns, and\nticker symbols. EB predicts returns are concentrated in accounting and past\nreturn strategies, small stocks, and pre-2004 samples. The cross-section of\nout-of-sample return lines up closely with EB predictions. Data-mined\nportfolios have mean returns comparable with published portfolios, but the\ndata-mined returns are arguably free of data mining bias. In contrast,\ncontrolling for multiple testing following Harvey, Liu, and Zhu (2016) misses\nthe vast majority of returns. This \"high-throughput asset pricing\" provides an\nevidence-based solution for data mining bias.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"174 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Asset Pricing\",\"authors\":\"Andrew Y. Chen, Chukwuma Dim\",\"doi\":\"arxiv-2311.10685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use empirical Bayes (EB) to mine for out-of-sample returns among 73,108\\nlong-short strategies constructed from accounting ratios, past returns, and\\nticker symbols. EB predicts returns are concentrated in accounting and past\\nreturn strategies, small stocks, and pre-2004 samples. The cross-section of\\nout-of-sample return lines up closely with EB predictions. Data-mined\\nportfolios have mean returns comparable with published portfolios, but the\\ndata-mined returns are arguably free of data mining bias. In contrast,\\ncontrolling for multiple testing following Harvey, Liu, and Zhu (2016) misses\\nthe vast majority of returns. This \\\"high-throughput asset pricing\\\" provides an\\nevidence-based solution for data mining bias.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"174 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.10685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.10685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用经验贝叶斯(EB)从会计比率、过去收益和股票代码构建的73,108个多空策略中挖掘样本外收益。EB预测的回报集中在会计和过去的回报策略、小股和2004年以前的样本上。样本外回报的横截面与EB预测密切相关。数据挖掘的投资组合具有与已发布的投资组合相当的平均回报,但数据挖掘的回报可以说没有数据挖掘的偏见。相比之下,在Harvey, Liu, and Zhu(2016)之后,控制多重测试错过了绝大多数回报。这种“高通量资产定价”为数据挖掘偏见提供了一种基于证据的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Throughput Asset Pricing
We use empirical Bayes (EB) to mine for out-of-sample returns among 73,108 long-short strategies constructed from accounting ratios, past returns, and ticker symbols. EB predicts returns are concentrated in accounting and past return strategies, small stocks, and pre-2004 samples. The cross-section of out-of-sample return lines up closely with EB predictions. Data-mined portfolios have mean returns comparable with published portfolios, but the data-mined returns are arguably free of data mining bias. In contrast, controlling for multiple testing following Harvey, Liu, and Zhu (2016) misses the vast majority of returns. This "high-throughput asset pricing" provides an evidence-based solution for data mining bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Asymmetry Index: The View of Market Analysts Market Failures of Carbon Trading Hydrogen Development in China and the EU: A Recommended Tian Ji's Horse Racing Strategy Applying the Nash Bargaining Solution for a Reasonable Royalty II Auction theory and demography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1