利用大型语言模型实现以数据为中心的工业研发周期的自动演化

Xu Yang, Xiao Yang, Weiqing Liu, Jinhui Li, Peng Yu, Zeqi Ye, Jiang Bian
{"title":"利用大型语言模型实现以数据为中心的工业研发周期的自动演化","authors":"Xu Yang, Xiao Yang, Weiqing Liu, Jinhui Li, Peng Yu, Zeqi Ye, Jiang Bian","doi":"arxiv-2310.11249","DOIUrl":null,"url":null,"abstract":"In the wake of relentless digital transformation, data-driven solutions are\nemerging as powerful tools to address multifarious industrial tasks such as\nforecasting, anomaly detection, planning, and even complex decision-making.\nAlthough data-centric R&D has been pivotal in harnessing these solutions, it\noften comes with significant costs in terms of human, computational, and time\nresources. This paper delves into the potential of large language models (LLMs)\nto expedite the evolution cycle of data-centric R&D. Assessing the foundational\nelements of data-centric R&D, including heterogeneous task-related data,\nmulti-facet domain knowledge, and diverse computing-functional tools, we\nexplore how well LLMs can understand domain-specific requirements, generate\nprofessional ideas, utilize domain-specific tools to conduct experiments,\ninterpret results, and incorporate knowledge from past endeavors to tackle new\nchallenges. We take quantitative investment research as a typical example of\nindustrial data-centric R&D scenario and verified our proposed framework upon\nour full-stack open-sourced quantitative research platform Qlib and obtained\npromising results which shed light on our vision of automatic evolving of\nindustrial data-centric R&D cycle.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Large Language Model for Automatic Evolving of Industrial Data-Centric R&D Cycle\",\"authors\":\"Xu Yang, Xiao Yang, Weiqing Liu, Jinhui Li, Peng Yu, Zeqi Ye, Jiang Bian\",\"doi\":\"arxiv-2310.11249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the wake of relentless digital transformation, data-driven solutions are\\nemerging as powerful tools to address multifarious industrial tasks such as\\nforecasting, anomaly detection, planning, and even complex decision-making.\\nAlthough data-centric R&D has been pivotal in harnessing these solutions, it\\noften comes with significant costs in terms of human, computational, and time\\nresources. This paper delves into the potential of large language models (LLMs)\\nto expedite the evolution cycle of data-centric R&D. Assessing the foundational\\nelements of data-centric R&D, including heterogeneous task-related data,\\nmulti-facet domain knowledge, and diverse computing-functional tools, we\\nexplore how well LLMs can understand domain-specific requirements, generate\\nprofessional ideas, utilize domain-specific tools to conduct experiments,\\ninterpret results, and incorporate knowledge from past endeavors to tackle new\\nchallenges. We take quantitative investment research as a typical example of\\nindustrial data-centric R&D scenario and verified our proposed framework upon\\nour full-stack open-sourced quantitative research platform Qlib and obtained\\npromising results which shed light on our vision of automatic evolving of\\nindustrial data-centric R&D cycle.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2310.11249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.11249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在无情的数字化转型之后,数据驱动的解决方案正在成为解决各种工业任务(如预测、异常检测、规划甚至复杂决策)的强大工具。尽管以数据为中心的研发在利用这些解决方案方面发挥了关键作用,但它往往在人力、计算和时间资源方面付出了巨大的成本。本文深入研究了大型语言模型(llm)的潜力,以加快以数据为中心的研发的演变周期。通过评估以数据为中心的研发的基本要素,包括异构任务相关数据、多方面的领域知识和多样化的计算功能工具,我们将探索法学硕士如何理解特定领域的需求、产生专业想法、利用特定领域的工具进行实验、解释结果,并将过去的努力中的知识整合到应对新挑战中。我们将量化投资研究作为工业数据中心研发场景的典型案例,在我们的全栈开源量化研究平台Qlib上验证了我们提出的框架,并获得了令人满意的结果,这有助于我们实现以工业数据为中心的研发周期自动演进的愿景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Large Language Model for Automatic Evolving of Industrial Data-Centric R&D Cycle
In the wake of relentless digital transformation, data-driven solutions are emerging as powerful tools to address multifarious industrial tasks such as forecasting, anomaly detection, planning, and even complex decision-making. Although data-centric R&D has been pivotal in harnessing these solutions, it often comes with significant costs in terms of human, computational, and time resources. This paper delves into the potential of large language models (LLMs) to expedite the evolution cycle of data-centric R&D. Assessing the foundational elements of data-centric R&D, including heterogeneous task-related data, multi-facet domain knowledge, and diverse computing-functional tools, we explore how well LLMs can understand domain-specific requirements, generate professional ideas, utilize domain-specific tools to conduct experiments, interpret results, and incorporate knowledge from past endeavors to tackle new challenges. We take quantitative investment research as a typical example of industrial data-centric R&D scenario and verified our proposed framework upon our full-stack open-sourced quantitative research platform Qlib and obtained promising results which shed light on our vision of automatic evolving of industrial data-centric R&D cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Asymmetry Index: The View of Market Analysts Market Failures of Carbon Trading Hydrogen Development in China and the EU: A Recommended Tian Ji's Horse Racing Strategy Applying the Nash Bargaining Solution for a Reasonable Royalty II Auction theory and demography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1