金融中的大型语言模型:综述

Yinheng Li, Shaofei Wang, Han Ding, Hang Chen
{"title":"金融中的大型语言模型:综述","authors":"Yinheng Li, Shaofei Wang, Han Ding, Hang Chen","doi":"arxiv-2311.10723","DOIUrl":null,"url":null,"abstract":"Recent advances in large language models (LLMs) have opened new possibilities\nfor artificial intelligence applications in finance. In this paper, we provide\na practical survey focused on two key aspects of utilizing LLMs for financial\ntasks: existing solutions and guidance for adoption. First, we review current approaches employing LLMs in finance, including\nleveraging pretrained models via zero-shot or few-shot learning, fine-tuning on\ndomain-specific data, and training custom LLMs from scratch. We summarize key\nmodels and evaluate their performance improvements on financial natural\nlanguage processing tasks. Second, we propose a decision framework to guide financial professionals in\nselecting the appropriate LLM solution based on their use case constraints\naround data, compute, and performance needs. The framework provides a pathway\nfrom lightweight experimentation to heavy investment in customized LLMs. Lastly, we discuss limitations and challenges around leveraging LLMs in\nfinancial applications. Overall, this survey aims to synthesize the\nstate-of-the-art and provide a roadmap for responsibly applying LLMs to advance\nfinancial AI.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"138 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Language Models in Finance: A Survey\",\"authors\":\"Yinheng Li, Shaofei Wang, Han Ding, Hang Chen\",\"doi\":\"arxiv-2311.10723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in large language models (LLMs) have opened new possibilities\\nfor artificial intelligence applications in finance. In this paper, we provide\\na practical survey focused on two key aspects of utilizing LLMs for financial\\ntasks: existing solutions and guidance for adoption. First, we review current approaches employing LLMs in finance, including\\nleveraging pretrained models via zero-shot or few-shot learning, fine-tuning on\\ndomain-specific data, and training custom LLMs from scratch. We summarize key\\nmodels and evaluate their performance improvements on financial natural\\nlanguage processing tasks. Second, we propose a decision framework to guide financial professionals in\\nselecting the appropriate LLM solution based on their use case constraints\\naround data, compute, and performance needs. The framework provides a pathway\\nfrom lightweight experimentation to heavy investment in customized LLMs. Lastly, we discuss limitations and challenges around leveraging LLMs in\\nfinancial applications. Overall, this survey aims to synthesize the\\nstate-of-the-art and provide a roadmap for responsibly applying LLMs to advance\\nfinancial AI.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"138 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.10723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.10723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)的最新进展为人工智能在金融领域的应用开辟了新的可能性。在本文中,我们提供了一个实践性的调查,集中在利用法学硕士财务任务的两个关键方面:现有的解决方案和采用指导。首先,我们回顾了目前在金融领域使用法学硕士的方法,包括通过零次或少次学习来利用预训练模型,微调特定领域的数据,以及从头开始培训定制法学硕士。我们总结了关键模型,并评估了它们在金融自然语言处理任务上的性能改进。其次,我们提出了一个决策框架,以指导金融专业人士根据他们在数据、计算和性能需求方面的用例约束选择适当的法学硕士解决方案。该框架提供了一条从轻量级实验到大量投资定制llm的途径。最后,我们讨论了在金融应用中利用法学硕士的限制和挑战。总体而言,本调查旨在综合最新技术,并为负责任地将法学硕士应用于先进的金融人工智能提供路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large Language Models in Finance: A Survey
Recent advances in large language models (LLMs) have opened new possibilities for artificial intelligence applications in finance. In this paper, we provide a practical survey focused on two key aspects of utilizing LLMs for financial tasks: existing solutions and guidance for adoption. First, we review current approaches employing LLMs in finance, including leveraging pretrained models via zero-shot or few-shot learning, fine-tuning on domain-specific data, and training custom LLMs from scratch. We summarize key models and evaluate their performance improvements on financial natural language processing tasks. Second, we propose a decision framework to guide financial professionals in selecting the appropriate LLM solution based on their use case constraints around data, compute, and performance needs. The framework provides a pathway from lightweight experimentation to heavy investment in customized LLMs. Lastly, we discuss limitations and challenges around leveraging LLMs in financial applications. Overall, this survey aims to synthesize the state-of-the-art and provide a roadmap for responsibly applying LLMs to advance financial AI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Asymmetry Index: The View of Market Analysts Market Failures of Carbon Trading Hydrogen Development in China and the EU: A Recommended Tian Ji's Horse Racing Strategy Applying the Nash Bargaining Solution for a Reasonable Royalty II Auction theory and demography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1