Imgenur Tepecik , Yumeng Zhao , Yongkoo Seol , Adrian Garcia , William F. Waite , Sheng Dai
{"title":"墨西哥湾GC955天然气水合物储层沉积物的水力特性","authors":"Imgenur Tepecik , Yumeng Zhao , Yongkoo Seol , Adrian Garcia , William F. Waite , Sheng Dai","doi":"10.1016/j.gete.2023.100522","DOIUrl":null,"url":null,"abstract":"<div><p>The economic feasibility of gas production from hydrate deposits is critical for hydrate to become an energy resource. Permeability in hydrate-bearing sediments dictates gas and water flow rates and needs to be accurately evaluated. Published permeability studies of hydrate-bearing sediments mostly quantify vertical permeability; however, the flow is mainly horizontal during gas production in layered reservoirs. Additionally, ASTM standards require a hydraulic gradient of 10–30 to be used during laboratory permeability measurements, but the gradient is much higher in the field, particularly near a production well. To address these issues, this study focuses on the hydraulic properties of a sandy silt subsample of the hydrate reservoir and a clayey silt subsample of the fine-grained, hydrate-free interbed recovered from a GC955 deep-water Gulf of Mexico gas hydrate reservoir. We characterize the sediment pore space with water retention curves for both hydrate-free and hydrate-bearing samples (hydrate saturation, <em>S</em><sub>h</sub> =80 %). Vertical deformation with increasing stress is also quantified while consolidating the samples to the 4 MPa in situ vertical effective stress. The customized permeameter measures both the horizontal and vertical permeability with increasing stress. Results show that high hydraulic gradients lower permeability in the flow direction, possibly due to increased flow tortuosity and local sediment compaction from the high seepage force. Assuming a single permeability value, even though hydraulic gradients decrease with distance from the well, is not realistic for field estimations. The results highlight that permeability anisotropy, hydrate saturation, stress conditions, and hydraulic gradient all substantially impact reservoir permeability during production.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100522"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380823000916/pdfft?md5=35a9d05cbdd1390980aeb278f93c7a43&pid=1-s2.0-S2352380823000916-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydraulic properties of sediments from the GC955 gas hydrate reservoir in the Gulf of Mexico\",\"authors\":\"Imgenur Tepecik , Yumeng Zhao , Yongkoo Seol , Adrian Garcia , William F. Waite , Sheng Dai\",\"doi\":\"10.1016/j.gete.2023.100522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The economic feasibility of gas production from hydrate deposits is critical for hydrate to become an energy resource. Permeability in hydrate-bearing sediments dictates gas and water flow rates and needs to be accurately evaluated. Published permeability studies of hydrate-bearing sediments mostly quantify vertical permeability; however, the flow is mainly horizontal during gas production in layered reservoirs. Additionally, ASTM standards require a hydraulic gradient of 10–30 to be used during laboratory permeability measurements, but the gradient is much higher in the field, particularly near a production well. To address these issues, this study focuses on the hydraulic properties of a sandy silt subsample of the hydrate reservoir and a clayey silt subsample of the fine-grained, hydrate-free interbed recovered from a GC955 deep-water Gulf of Mexico gas hydrate reservoir. We characterize the sediment pore space with water retention curves for both hydrate-free and hydrate-bearing samples (hydrate saturation, <em>S</em><sub>h</sub> =80 %). Vertical deformation with increasing stress is also quantified while consolidating the samples to the 4 MPa in situ vertical effective stress. The customized permeameter measures both the horizontal and vertical permeability with increasing stress. Results show that high hydraulic gradients lower permeability in the flow direction, possibly due to increased flow tortuosity and local sediment compaction from the high seepage force. Assuming a single permeability value, even though hydraulic gradients decrease with distance from the well, is not realistic for field estimations. The results highlight that permeability anisotropy, hydrate saturation, stress conditions, and hydraulic gradient all substantially impact reservoir permeability during production.</p></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"37 \",\"pages\":\"Article 100522\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352380823000916/pdfft?md5=35a9d05cbdd1390980aeb278f93c7a43&pid=1-s2.0-S2352380823000916-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380823000916\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380823000916","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Hydraulic properties of sediments from the GC955 gas hydrate reservoir in the Gulf of Mexico
The economic feasibility of gas production from hydrate deposits is critical for hydrate to become an energy resource. Permeability in hydrate-bearing sediments dictates gas and water flow rates and needs to be accurately evaluated. Published permeability studies of hydrate-bearing sediments mostly quantify vertical permeability; however, the flow is mainly horizontal during gas production in layered reservoirs. Additionally, ASTM standards require a hydraulic gradient of 10–30 to be used during laboratory permeability measurements, but the gradient is much higher in the field, particularly near a production well. To address these issues, this study focuses on the hydraulic properties of a sandy silt subsample of the hydrate reservoir and a clayey silt subsample of the fine-grained, hydrate-free interbed recovered from a GC955 deep-water Gulf of Mexico gas hydrate reservoir. We characterize the sediment pore space with water retention curves for both hydrate-free and hydrate-bearing samples (hydrate saturation, Sh =80 %). Vertical deformation with increasing stress is also quantified while consolidating the samples to the 4 MPa in situ vertical effective stress. The customized permeameter measures both the horizontal and vertical permeability with increasing stress. Results show that high hydraulic gradients lower permeability in the flow direction, possibly due to increased flow tortuosity and local sediment compaction from the high seepage force. Assuming a single permeability value, even though hydraulic gradients decrease with distance from the well, is not realistic for field estimations. The results highlight that permeability anisotropy, hydrate saturation, stress conditions, and hydraulic gradient all substantially impact reservoir permeability during production.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.