求解Polyak -Łojasiewicz条件下随机鞍型优化问题的无梯度算法

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Programming and Computer Software Pub Date : 2023-12-01 DOI:10.1134/s0361768823060063
S. I. Sadykov, A. V. Lobanov, A. M. Raigorodskii
{"title":"求解Polyak -Łojasiewicz条件下随机鞍型优化问题的无梯度算法","authors":"S. I. Sadykov, A. V. Lobanov, A. M. Raigorodskii","doi":"10.1134/s0361768823060063","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper focuses on solving a subclass of stochastic nonconvex-nonconcave black box optimization problems with a saddle point that satisfy the Polyak–Łojasiewicz (PL) condition. To solve this problem, we provide the first (to our best knowledge) gradient-free algorithm. The proposed approach is based on applying a gradient approximation (kernel approximation) to an oracle-biased stochastic gradient descent algorithm. We present theoretical estimates that guarantee its global linear rate of convergence to the desired accuracy. The theoretical results are checked on a model example by comparison with an algorithm using Gaussian approximation.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":"34 11","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient-Free Algorithms for Solving Stochastic Saddle Optimization Problems with the Polyak–Łojasiewicz Condition\",\"authors\":\"S. I. Sadykov, A. V. Lobanov, A. M. Raigorodskii\",\"doi\":\"10.1134/s0361768823060063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This paper focuses on solving a subclass of stochastic nonconvex-nonconcave black box optimization problems with a saddle point that satisfy the Polyak–Łojasiewicz (PL) condition. To solve this problem, we provide the first (to our best knowledge) gradient-free algorithm. The proposed approach is based on applying a gradient approximation (kernel approximation) to an oracle-biased stochastic gradient descent algorithm. We present theoretical estimates that guarantee its global linear rate of convergence to the desired accuracy. The theoretical results are checked on a model example by comparison with an algorithm using Gaussian approximation.</p>\",\"PeriodicalId\":54555,\"journal\":{\"name\":\"Programming and Computer Software\",\"volume\":\"34 11\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programming and Computer Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1134/s0361768823060063\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0361768823060063","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了一类鞍点满足Polyak -Łojasiewicz (PL)条件的随机非凸非凹黑箱优化问题。为了解决这个问题,我们提供了第一个(据我们所知)无梯度算法。该方法基于将梯度近似(核近似)应用于oracle-biased stochastic gradient descent算法。我们给出了保证其全局线性收敛速度达到期望精度的理论估计。通过与高斯近似算法的比较,验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient-Free Algorithms for Solving Stochastic Saddle Optimization Problems with the Polyak–Łojasiewicz Condition

Abstract

This paper focuses on solving a subclass of stochastic nonconvex-nonconcave black box optimization problems with a saddle point that satisfy the Polyak–Łojasiewicz (PL) condition. To solve this problem, we provide the first (to our best knowledge) gradient-free algorithm. The proposed approach is based on applying a gradient approximation (kernel approximation) to an oracle-biased stochastic gradient descent algorithm. We present theoretical estimates that guarantee its global linear rate of convergence to the desired accuracy. The theoretical results are checked on a model example by comparison with an algorithm using Gaussian approximation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Programming and Computer Software
Programming and Computer Software 工程技术-计算机:软件工程
CiteScore
1.60
自引率
28.60%
发文量
35
审稿时长
>12 weeks
期刊介绍: Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.
期刊最新文献
Comparative Efficiency Analysis of Hashing Algorithms for Use in zk-SNARK Circuits in Distributed Ledgers Constructing the Internal Voronoi Diagram of Polygonal Figure Using the Sweepline Method RuGECToR: Rule-Based Neural Network Model for Russian Language Grammatical Error Correction Secure Messaging Application Development: Based on Post-Quantum Algorithms CSIDH, Falcon, and AES Symmetric Key Cryptosystem Analytical Review of Confidential Artificial Intelligence: Methods and Algorithms for Deployment in Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1