行业新闻

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Journal of Plastic Film & Sheeting Pub Date : 2022-04-08 DOI:10.1177/87560879221089432
{"title":"行业新闻","authors":"","doi":"10.1177/87560879221089432","DOIUrl":null,"url":null,"abstract":"<p>Full circle: ZnII-complexes bearing half-salan ligands facilitate the mild and selective degradation of various commercial polyesters and polycarbonates into value-added products (green solvents and chemical building blocks). We report the first example of discrete metal-mediated poly (bisphenol A carbonate) methanolysis being appreciably active at room temperature, whilst the production of several renewable poly (ester-amides)s demonstrates a completely circular PET waste upcycling approach. ZnII-complexes bearing half-salan ligands were exploited in the mild and selective chemical upcycling of various commercial polyesters and polycarbonates. Remarkably, we report the first example of discrete metal-mediated poly (bisphenol A carbonate) (BPA-PC) methanolysis being appreciably active at room temperature. Indeed, Zn (2)2 and Zn (2)Et achieved complete BPA-PC consumption within 12–18 min in 2-Me-THF, noting high bisphenol A (BPA) yields (SBPA = 85–91%) within 2–4 h. Further kinetic analysis found such catalysts to possess kapp values of 0.28 ± 0.040 and 0.47 ± 0.049 min−1, respectively, at 4 wt%, the highest reported to date. A completely circular upcycling approach to plastic waste was demonstrated through the production of several renewable poly (ester-amide)s (PEAs), based on a terephthalamide monomer derived from bottle-grade poly (ethylene terephthalate) (PET), which exhibited excellent thermal properties.</p>","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"36 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industry News\",\"authors\":\"\",\"doi\":\"10.1177/87560879221089432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Full circle: ZnII-complexes bearing half-salan ligands facilitate the mild and selective degradation of various commercial polyesters and polycarbonates into value-added products (green solvents and chemical building blocks). We report the first example of discrete metal-mediated poly (bisphenol A carbonate) methanolysis being appreciably active at room temperature, whilst the production of several renewable poly (ester-amides)s demonstrates a completely circular PET waste upcycling approach. ZnII-complexes bearing half-salan ligands were exploited in the mild and selective chemical upcycling of various commercial polyesters and polycarbonates. Remarkably, we report the first example of discrete metal-mediated poly (bisphenol A carbonate) (BPA-PC) methanolysis being appreciably active at room temperature. Indeed, Zn (2)2 and Zn (2)Et achieved complete BPA-PC consumption within 12–18 min in 2-Me-THF, noting high bisphenol A (BPA) yields (SBPA = 85–91%) within 2–4 h. Further kinetic analysis found such catalysts to possess kapp values of 0.28 ± 0.040 and 0.47 ± 0.049 min−1, respectively, at 4 wt%, the highest reported to date. A completely circular upcycling approach to plastic waste was demonstrated through the production of several renewable poly (ester-amide)s (PEAs), based on a terephthalamide monomer derived from bottle-grade poly (ethylene terephthalate) (PET), which exhibited excellent thermal properties.</p>\",\"PeriodicalId\":16823,\"journal\":{\"name\":\"Journal of Plastic Film & Sheeting\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plastic Film & Sheeting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/87560879221089432\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879221089432","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

完整循环:含半萨兰配体的ni -配合物促进了各种商业聚酯和聚碳酸酯的温和和选择性降解,成为增值产品(绿色溶剂和化学构建模块)。我们报告了离散金属介导的聚(双酚A碳酸酯)甲醇分解在室温下具有明显活性的第一个例子,同时几种可再生聚(酯酰胺)的生产展示了一个完全循环的PET废物升级回收方法。含半萨兰配体的ni -配合物被用于各种商用聚酯和聚碳酸酯的温和和选择性化学升级。值得注意的是,我们报告了离散金属介导的聚双酚A碳酸酯(BPA-PC)甲醇分解在室温下明显活跃的第一个例子。事实上,Zn(2)2和Zn (2)Et在2- me - thf中在12-18分钟内完全消耗了BPA- pc,并在2- 4小时内产生了高双酚A (BPA)收率(SBPA = 85-91%)。进一步的动力学分析发现,这些催化剂在4 wt%时分别具有0.28±0.040和0.47±0.049 min - 1的kapp值,这是迄今为止报道的最高值。通过从瓶级聚对苯二甲酸乙酯(PET)中提取的对苯二甲酸乙酯(PET)单体生产几种可再生聚(酯酰胺)(豌豆),展示了一种完全循环的塑料废物升级回收方法,这种聚合物具有优异的热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Industry News

Full circle: ZnII-complexes bearing half-salan ligands facilitate the mild and selective degradation of various commercial polyesters and polycarbonates into value-added products (green solvents and chemical building blocks). We report the first example of discrete metal-mediated poly (bisphenol A carbonate) methanolysis being appreciably active at room temperature, whilst the production of several renewable poly (ester-amides)s demonstrates a completely circular PET waste upcycling approach. ZnII-complexes bearing half-salan ligands were exploited in the mild and selective chemical upcycling of various commercial polyesters and polycarbonates. Remarkably, we report the first example of discrete metal-mediated poly (bisphenol A carbonate) (BPA-PC) methanolysis being appreciably active at room temperature. Indeed, Zn (2)2 and Zn (2)Et achieved complete BPA-PC consumption within 12–18 min in 2-Me-THF, noting high bisphenol A (BPA) yields (SBPA = 85–91%) within 2–4 h. Further kinetic analysis found such catalysts to possess kapp values of 0.28 ± 0.040 and 0.47 ± 0.049 min−1, respectively, at 4 wt%, the highest reported to date. A completely circular upcycling approach to plastic waste was demonstrated through the production of several renewable poly (ester-amide)s (PEAs), based on a terephthalamide monomer derived from bottle-grade poly (ethylene terephthalate) (PET), which exhibited excellent thermal properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plastic Film & Sheeting
Journal of Plastic Film & Sheeting 工程技术-材料科学:膜
CiteScore
6.00
自引率
16.10%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Effects of Lithium bis(trifluoromethanesulfonyl)imide loading on thermal, mechanical and ion conducting properties of specialty interlayer films derived from scrap Polyvinyl butyral Industry News Vol 40(3) Making the most from measuring counts Coating of micropolar fluid during non-isothermal reverse roll coating phenomena Partially phosphorylated poly(vinyl alcohol) – A promising candidate in corrosion protection of magnesium for the biomedical industry?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1