Samiran Bairagi, Jui-Che Chang, Fu-Gow Tarntair, Wan-Yu Wu, Gueorgui K. Gueorguiev, Edward Ferraz de Almeida, Roger Magnusson, Kun-Lin Lin, Shao-Hui Hsu, Jia-Min Shieh, Jens Birch, Ray-Hua Horng, Kenneth Järrendahl, Ching-Lien Hsiao
{"title":"尖晶石Zn(AlxGa1−x)2O4脱膜与Al2O3衬底热诱导互扩散制备季型Zn(AlxGa1−x)2O4脱膜","authors":"Samiran Bairagi, Jui-Che Chang, Fu-Gow Tarntair, Wan-Yu Wu, Gueorgui K. Gueorguiev, Edward Ferraz de Almeida, Roger Magnusson, Kun-Lin Lin, Shao-Hui Hsu, Jia-Min Shieh, Jens Birch, Ray-Hua Horng, Kenneth Järrendahl, Ching-Lien Hsiao","doi":"10.1016/j.mtadv.2023.100422","DOIUrl":null,"url":null,"abstract":"<p>Zinc aluminogallate, <span><math><mrow is=\"true\"><mtext is=\"true\">Zn</mtext><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\" stretchy=\"true\">(</mo><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">A</mi><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">l</mi><mi is=\"true\" mathvariant=\"normal\">x</mi></msub><mi is=\"true\" mathvariant=\"normal\">G</mi><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">a</mi><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">−</mo><mi is=\"true\" mathvariant=\"normal\">x</mi></mrow></msub></mrow><mo is=\"true\" stretchy=\"true\">)</mo></mrow><mn is=\"true\">2</mn></msub><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mn is=\"true\">4</mn></msub></mrow></math></span> (ZAGO), a single-phase spinel structure, offers considerable potential for high-performance electronic devices due to its expansive compositional miscibility range between aluminum (Al) and gallium (Ga). Direct growth of high-quality ZAGO epilayers however remains problematic due to the high volatility of zinc (Zn). This work highlights a novel synthesis process for high-quality epitaxial quaternary ZAGO thin films on sapphire substrates, achieved through thermal annealing of a <span><math><mrow is=\"true\"><mtext is=\"true\">ZnG</mtext><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">a</mi><mn is=\"true\">2</mn></msub><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mn is=\"true\">4</mn></msub></mrow></math></span> (ZGO) epilayer on sapphire in an ambient air setting. <em>In-situ</em> annealing x-ray diffraction measurements show that the incorporation of Al in the ZGO epilayer commenced at 850 °C. The Al content (x) in ZAGO epilayer gradually increased up to around 0.45 as the annealing temperature was raised to 1100 °C, which was confirmed by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy. X-ray rocking curve measurement revealed a small full width at half maximum value of 0.72 <span><math><mrow is=\"true\"><mo is=\"true\">°</mo></mrow></math></span>, indicating the crystal quality preservation of the ZAGO epilayer with a high Al content. However, an epitaxial intermediate <span><math><mrow is=\"true\"><mi is=\"true\">β</mi><mspace is=\"true\" width=\"0.25em\"></mspace><mo is=\"true\">–</mo><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\" stretchy=\"true\">(</mo><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">A</mi><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">l</mi><mi is=\"true\" mathvariant=\"normal\">x</mi></msub><mi is=\"true\" mathvariant=\"normal\">G</mi><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">a</mi><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">−</mo><mi is=\"true\" mathvariant=\"normal\">x</mi></mrow></msub></mrow><mo is=\"true\" stretchy=\"true\">)</mo></mrow><mn is=\"true\">2</mn></msub><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mn is=\"true\">3</mn></msub></mrow></math></span> layer (<span><math><mrow is=\"true\"><mi is=\"true\">β</mi></mrow></math></span> - AGO) was formed between the ZAGO and sapphire substrate. This is believed to be a consequence of the interdiffusion of Al and Ga between the ZGO thin film and sapphire substrate. Using density functional theory, the substitution cost of Ga in sapphire was determined to be about 0.5 eV lower than substitution cost of Al in ZGO. Motivated by this energetically favorable substitution, a formation mechanism of the ZAGO and AGO layers was proposed. Spectroscopic ellipsometry studies revealed an increase in total thickness of the film from 105.07 nm (ZGO) to 147.97 nm (ZAGO/AGO) after annealing to 1100 <span><math><mrow is=\"true\"><mo is=\"true\">°C</mo></mrow></math></span>, which were corroborated using TEM. Furthermore, an observed increase in the direct (indirect) optical bandgap from 5.06 eV (4.7 eV) to 5.72 eV (5.45 eV) with an increasing Al content in the ZAGO layer further underpins the formation of a quaternary ZAGO alloy with a tunable composition.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"5 10","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of quaternary Zn(AlxGa1−x)2O4 epilayers driven by thermally induced interdiffusion between spinel ZnGa2O4 epilayer and Al2O3 substrate\",\"authors\":\"Samiran Bairagi, Jui-Che Chang, Fu-Gow Tarntair, Wan-Yu Wu, Gueorgui K. Gueorguiev, Edward Ferraz de Almeida, Roger Magnusson, Kun-Lin Lin, Shao-Hui Hsu, Jia-Min Shieh, Jens Birch, Ray-Hua Horng, Kenneth Järrendahl, Ching-Lien Hsiao\",\"doi\":\"10.1016/j.mtadv.2023.100422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zinc aluminogallate, <span><math><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">Zn</mtext><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\" stretchy=\\\"true\\\">(</mo><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">A</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">l</mi><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">x</mi></msub><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">G</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">a</mi><mrow is=\\\"true\\\"><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">−</mo><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">x</mi></mrow></msub></mrow><mo is=\\\"true\\\" stretchy=\\\"true\\\">)</mo></mrow><mn is=\\\"true\\\">2</mn></msub><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi><mn is=\\\"true\\\">4</mn></msub></mrow></math></span> (ZAGO), a single-phase spinel structure, offers considerable potential for high-performance electronic devices due to its expansive compositional miscibility range between aluminum (Al) and gallium (Ga). Direct growth of high-quality ZAGO epilayers however remains problematic due to the high volatility of zinc (Zn). This work highlights a novel synthesis process for high-quality epitaxial quaternary ZAGO thin films on sapphire substrates, achieved through thermal annealing of a <span><math><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">ZnG</mtext><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">a</mi><mn is=\\\"true\\\">2</mn></msub><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi><mn is=\\\"true\\\">4</mn></msub></mrow></math></span> (ZGO) epilayer on sapphire in an ambient air setting. <em>In-situ</em> annealing x-ray diffraction measurements show that the incorporation of Al in the ZGO epilayer commenced at 850 °C. The Al content (x) in ZAGO epilayer gradually increased up to around 0.45 as the annealing temperature was raised to 1100 °C, which was confirmed by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy. X-ray rocking curve measurement revealed a small full width at half maximum value of 0.72 <span><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">°</mo></mrow></math></span>, indicating the crystal quality preservation of the ZAGO epilayer with a high Al content. However, an epitaxial intermediate <span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">β</mi><mspace is=\\\"true\\\" width=\\\"0.25em\\\"></mspace><mo is=\\\"true\\\">–</mo><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\" stretchy=\\\"true\\\">(</mo><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">A</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">l</mi><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">x</mi></msub><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">G</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">a</mi><mrow is=\\\"true\\\"><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">−</mo><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">x</mi></mrow></msub></mrow><mo is=\\\"true\\\" stretchy=\\\"true\\\">)</mo></mrow><mn is=\\\"true\\\">2</mn></msub><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi><mn is=\\\"true\\\">3</mn></msub></mrow></math></span> layer (<span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">β</mi></mrow></math></span> - AGO) was formed between the ZAGO and sapphire substrate. This is believed to be a consequence of the interdiffusion of Al and Ga between the ZGO thin film and sapphire substrate. Using density functional theory, the substitution cost of Ga in sapphire was determined to be about 0.5 eV lower than substitution cost of Al in ZGO. Motivated by this energetically favorable substitution, a formation mechanism of the ZAGO and AGO layers was proposed. Spectroscopic ellipsometry studies revealed an increase in total thickness of the film from 105.07 nm (ZGO) to 147.97 nm (ZAGO/AGO) after annealing to 1100 <span><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">°C</mo></mrow></math></span>, which were corroborated using TEM. Furthermore, an observed increase in the direct (indirect) optical bandgap from 5.06 eV (4.7 eV) to 5.72 eV (5.45 eV) with an increasing Al content in the ZAGO layer further underpins the formation of a quaternary ZAGO alloy with a tunable composition.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"5 10\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2023.100422\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100422","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
锌铝酸盐Zn(AlxGa1−x)2O4 (ZAGO)是一种单相尖晶石结构,由于其在铝(Al)和镓(Ga)之间具有广泛的成分混溶范围,因此在高性能电子器件中具有相当大的潜力。然而,由于锌(Zn)的高挥发性,直接生长高质量的ZAGO脱毛膜仍然存在问题。这项工作强调了一种在蓝宝石衬底上制备高质量外延季元ZAGO薄膜的新工艺,该工艺是通过在环境空气环境中对蓝宝石上的ZnGa2O4 (ZGO)脱膜进行热退火而实现的。原位退火x射线衍射测量表明,铝在850℃时开始在ZGO涂层中掺入。通过透射电镜(TEM)和x射线能谱分析证实,随着退火温度升高至1100℃,ZAGO脱膜中Al含量(x)逐渐增加,达到0.45左右。x射线摇摆曲线测量显示,在半最大值0.72°处,ZAGO脱膜的全宽度很小,表明高Al含量的ZAGO脱膜保持了晶体质量。然而,在ZAGO和蓝宝石衬底之间形成了一个外延的中间β - (AlxGa1−x)2O3层(β - AGO)。这被认为是Al和Ga在ZGO薄膜和蓝宝石衬底之间相互扩散的结果。利用密度泛函理论,确定了蓝宝石中Ga的取代成本比ZGO中Al的取代成本低0.5 eV左右。在这种有利能量取代的驱动下,提出了ZAGO和AGO层的形成机制。椭偏光谱研究表明,退火至1100℃后,薄膜的总厚度从105.07 nm (ZGO)增加到147.97 nm (ZAGO/AGO),用TEM证实了这一点。此外,随着ZAGO层中Al含量的增加,直接(间接)光学带隙从5.06 eV (4.7 eV)增加到5.72 eV (5.45 eV),进一步支持了具有可调谐成分的四元ZAGO合金的形成。
Formation of quaternary Zn(AlxGa1−x)2O4 epilayers driven by thermally induced interdiffusion between spinel ZnGa2O4 epilayer and Al2O3 substrate
Zinc aluminogallate, (ZAGO), a single-phase spinel structure, offers considerable potential for high-performance electronic devices due to its expansive compositional miscibility range between aluminum (Al) and gallium (Ga). Direct growth of high-quality ZAGO epilayers however remains problematic due to the high volatility of zinc (Zn). This work highlights a novel synthesis process for high-quality epitaxial quaternary ZAGO thin films on sapphire substrates, achieved through thermal annealing of a (ZGO) epilayer on sapphire in an ambient air setting. In-situ annealing x-ray diffraction measurements show that the incorporation of Al in the ZGO epilayer commenced at 850 °C. The Al content (x) in ZAGO epilayer gradually increased up to around 0.45 as the annealing temperature was raised to 1100 °C, which was confirmed by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy. X-ray rocking curve measurement revealed a small full width at half maximum value of 0.72 , indicating the crystal quality preservation of the ZAGO epilayer with a high Al content. However, an epitaxial intermediate layer ( - AGO) was formed between the ZAGO and sapphire substrate. This is believed to be a consequence of the interdiffusion of Al and Ga between the ZGO thin film and sapphire substrate. Using density functional theory, the substitution cost of Ga in sapphire was determined to be about 0.5 eV lower than substitution cost of Al in ZGO. Motivated by this energetically favorable substitution, a formation mechanism of the ZAGO and AGO layers was proposed. Spectroscopic ellipsometry studies revealed an increase in total thickness of the film from 105.07 nm (ZGO) to 147.97 nm (ZAGO/AGO) after annealing to 1100 , which were corroborated using TEM. Furthermore, an observed increase in the direct (indirect) optical bandgap from 5.06 eV (4.7 eV) to 5.72 eV (5.45 eV) with an increasing Al content in the ZAGO layer further underpins the formation of a quaternary ZAGO alloy with a tunable composition.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.