{"title":"PCR快速可持续热循环用等离子体材料及制造方法","authors":"Kiran Shrestha, Seongryeong Kim, Gyoujin Cho","doi":"10.1016/j.mtadv.2023.100420","DOIUrl":null,"url":null,"abstract":"<p>Multiple outbreaks of fatal infectious diseases throughout history have intensified the need for early diagnostic methods to efficiently control their spread. Polymerase chain reaction (PCR)-based diagnosis is a sensitive, accurate, and effective method for detecting infections. However, conventional PCR-based diagnosis is slow and consumes large amounts of energy, primarily because of bulky, power-consuming thermal cyclers. Herein, we review recently published PCR-based diagnostic methods, in which plasmonic light-to-heat conversion-based thermal cyclers replace conventional ones. First, we explain the structures of recently developed rapid plasmonic-based thermal cyclers and review the various materials used. Next, we review the fabrication methods used in recent developments in rapid plasmonic thermal cyclers. Then, we discuss sustainable methods that have been and can be implemented to develop a rapid plasmonic thermal cycler. With this review, the requirements for developing a plasmonic-based sustainable PCR with high speed, accuracy, and sensitivity can be understood to contain future pandemics.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"70 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic materials and manufacturing methods for rapid and sustainable thermal cycler for PCR\",\"authors\":\"Kiran Shrestha, Seongryeong Kim, Gyoujin Cho\",\"doi\":\"10.1016/j.mtadv.2023.100420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple outbreaks of fatal infectious diseases throughout history have intensified the need for early diagnostic methods to efficiently control their spread. Polymerase chain reaction (PCR)-based diagnosis is a sensitive, accurate, and effective method for detecting infections. However, conventional PCR-based diagnosis is slow and consumes large amounts of energy, primarily because of bulky, power-consuming thermal cyclers. Herein, we review recently published PCR-based diagnostic methods, in which plasmonic light-to-heat conversion-based thermal cyclers replace conventional ones. First, we explain the structures of recently developed rapid plasmonic-based thermal cyclers and review the various materials used. Next, we review the fabrication methods used in recent developments in rapid plasmonic thermal cyclers. Then, we discuss sustainable methods that have been and can be implemented to develop a rapid plasmonic thermal cycler. With this review, the requirements for developing a plasmonic-based sustainable PCR with high speed, accuracy, and sensitivity can be understood to contain future pandemics.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2023.100420\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100420","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Plasmonic materials and manufacturing methods for rapid and sustainable thermal cycler for PCR
Multiple outbreaks of fatal infectious diseases throughout history have intensified the need for early diagnostic methods to efficiently control their spread. Polymerase chain reaction (PCR)-based diagnosis is a sensitive, accurate, and effective method for detecting infections. However, conventional PCR-based diagnosis is slow and consumes large amounts of energy, primarily because of bulky, power-consuming thermal cyclers. Herein, we review recently published PCR-based diagnostic methods, in which plasmonic light-to-heat conversion-based thermal cyclers replace conventional ones. First, we explain the structures of recently developed rapid plasmonic-based thermal cyclers and review the various materials used. Next, we review the fabrication methods used in recent developments in rapid plasmonic thermal cyclers. Then, we discuss sustainable methods that have been and can be implemented to develop a rapid plasmonic thermal cycler. With this review, the requirements for developing a plasmonic-based sustainable PCR with high speed, accuracy, and sensitivity can be understood to contain future pandemics.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.