具有狄拉克δ势的非线性Schrödinger方程的精确和有效的数值方法

IF 1.4 2区 数学 Q1 MATHEMATICS Calcolo Pub Date : 2023-11-20 DOI:10.1007/s10092-023-00551-3
Xuanxuan Zhou, Yongyong Cai, Xingdong Tang, Guixiang Xu
{"title":"具有狄拉克δ势的非线性Schrödinger方程的精确和有效的数值方法","authors":"Xuanxuan Zhou, Yongyong Cai, Xingdong Tang, Guixiang Xu","doi":"10.1007/s10092-023-00551-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce two conservative Crank–Nicolson type finite difference schemes and a Chebyshev collocation scheme for the nonlinear Schrödinger equation with a Dirac delta potential in 1D. The key to the proposed methods is to transform the original problem into an interface problem. Different treatments on the interface conditions lead to different discrete schemes and it turns out that a simple discrete approximation of the Dirac potential coincides with one of the conservative finite difference schemes. The optimal <span>\\(H^1\\)</span> error estimates and the conservative properties of the finite difference schemes are investigated. Both Crank-Nicolson finite difference methods enjoy the second-order convergence rate in time, and the first-order/second-order convergence rates in space, depending on the approximation of the interface condition. Furthermore, the Chebyshev collocation method has been established by the domain-decomposition techniques, and it is numerically verified to be second-order convergent in time and spectrally accurate in space. Numerical examples are provided to support our analysis and study the orbital stability and the motion of the solitary solutions.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate and efficient numerical methods for the nonlinear Schrödinger equation with Dirac delta potential\",\"authors\":\"Xuanxuan Zhou, Yongyong Cai, Xingdong Tang, Guixiang Xu\",\"doi\":\"10.1007/s10092-023-00551-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce two conservative Crank–Nicolson type finite difference schemes and a Chebyshev collocation scheme for the nonlinear Schrödinger equation with a Dirac delta potential in 1D. The key to the proposed methods is to transform the original problem into an interface problem. Different treatments on the interface conditions lead to different discrete schemes and it turns out that a simple discrete approximation of the Dirac potential coincides with one of the conservative finite difference schemes. The optimal <span>\\\\(H^1\\\\)</span> error estimates and the conservative properties of the finite difference schemes are investigated. Both Crank-Nicolson finite difference methods enjoy the second-order convergence rate in time, and the first-order/second-order convergence rates in space, depending on the approximation of the interface condition. Furthermore, the Chebyshev collocation method has been established by the domain-decomposition techniques, and it is numerically verified to be second-order convergent in time and spectrally accurate in space. Numerical examples are provided to support our analysis and study the orbital stability and the motion of the solitary solutions.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-023-00551-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-023-00551-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对一维中具有Dirac δ势的非线性Schrödinger方程,给出了两种保守的Crank-Nicolson型有限差分格式和一种Chebyshev配置格式。该方法的关键是将原问题转化为接口问题。对界面条件的不同处理导致了不同的离散格式,结果表明狄拉克势的一个简单的离散近似与一种保守的有限差分格式相吻合。研究了有限差分格式的最优\(H^1\)误差估计和保守性。Crank-Nicolson有限差分方法在时间上具有二阶收敛率,在空间上具有一阶/二阶收敛率,这取决于界面条件的近似。利用区域分解技术建立了切比雪夫配置方法,数值验证了该方法在时间上具有二阶收敛性,在空间上具有谱精度。给出了数值例子来支持我们的分析和研究孤立解的轨道稳定性和运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate and efficient numerical methods for the nonlinear Schrödinger equation with Dirac delta potential

In this paper, we introduce two conservative Crank–Nicolson type finite difference schemes and a Chebyshev collocation scheme for the nonlinear Schrödinger equation with a Dirac delta potential in 1D. The key to the proposed methods is to transform the original problem into an interface problem. Different treatments on the interface conditions lead to different discrete schemes and it turns out that a simple discrete approximation of the Dirac potential coincides with one of the conservative finite difference schemes. The optimal \(H^1\) error estimates and the conservative properties of the finite difference schemes are investigated. Both Crank-Nicolson finite difference methods enjoy the second-order convergence rate in time, and the first-order/second-order convergence rates in space, depending on the approximation of the interface condition. Furthermore, the Chebyshev collocation method has been established by the domain-decomposition techniques, and it is numerically verified to be second-order convergent in time and spectrally accurate in space. Numerical examples are provided to support our analysis and study the orbital stability and the motion of the solitary solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
期刊最新文献
Adaptive finite element approximation of bilinear optimal control problem with fractional Laplacian An explicit two-grid spectral deferred correction method for nonlinear fractional pantograph differential equations Fast algebraic multigrid for block-structured dense systems arising from nonlocal diffusion problems A modification of the periodic nonuniform sampling involving derivatives with a Gaussian multiplier On the positivity of B-spline Wronskians
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1