基于方差分析的输入和输出之间关联的基于核的度量

Matieyendou Lamboni
{"title":"基于方差分析的输入和输出之间关联的基于核的度量","authors":"Matieyendou Lamboni","doi":"arxiv-2311.14894","DOIUrl":null,"url":null,"abstract":"ANOVA decomposition of function with random input variables provides ANOVA\nfunctionals (AFs), which contain information about the contributions of the\ninput variables on the output variable(s). By embedding AFs into an appropriate\nreproducing kernel Hilbert space regarding their distributions, we propose an\nefficient statistical test of independence between the input variables and\noutput variable(s). The resulting test statistic leads to new dependent\nmeasures of association between inputs and outputs that allow for i) dealing\nwith any distribution of AFs, including the Cauchy distribution, ii) accounting\nfor the necessary or desirable moments of AFs and the interactions among the\ninput variables. In uncertainty quantification for mathematical models, a\nnumber of existing measures are special cases of this framework. We then\nprovide unified and general global sensitivity indices and their consistent\nestimators, including asymptotic distributions. For Gaussian-distributed AFs,\nwe obtain Sobol' indices and dependent generalized sensitivity indices using\nquadratic kernels.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel-based measures of association between inputs and outputs based on ANOVA\",\"authors\":\"Matieyendou Lamboni\",\"doi\":\"arxiv-2311.14894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ANOVA decomposition of function with random input variables provides ANOVA\\nfunctionals (AFs), which contain information about the contributions of the\\ninput variables on the output variable(s). By embedding AFs into an appropriate\\nreproducing kernel Hilbert space regarding their distributions, we propose an\\nefficient statistical test of independence between the input variables and\\noutput variable(s). The resulting test statistic leads to new dependent\\nmeasures of association between inputs and outputs that allow for i) dealing\\nwith any distribution of AFs, including the Cauchy distribution, ii) accounting\\nfor the necessary or desirable moments of AFs and the interactions among the\\ninput variables. In uncertainty quantification for mathematical models, a\\nnumber of existing measures are special cases of this framework. We then\\nprovide unified and general global sensitivity indices and their consistent\\nestimators, including asymptotic distributions. For Gaussian-distributed AFs,\\nwe obtain Sobol' indices and dependent generalized sensitivity indices using\\nquadratic kernels.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.14894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.14894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机输入变量函数的方差分析分解提供了方差函数(AFs),其中包含有关输入变量对输出变量的贡献的信息。通过将AFs嵌入到有关其分布的适当再现核希尔伯特空间中,我们提出了输入变量和输出变量之间独立性的有效统计检验。由此产生的检验统计量导致输入和输出之间关联的新依赖度量,允许i)处理AFs的任何分布,包括柯西分布,ii)考虑AFs的必要或理想时刻以及输入变量之间的相互作用。在数学模型的不确定性量化中,现有测度的数量是该框架的特殊情况。然后,我们给出了统一的和通用的全局灵敏度指标及其一致性估计,包括渐近分布。对于高斯分布AFs,我们利用二次核得到Sobol指标和相关广义灵敏度指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel-based measures of association between inputs and outputs based on ANOVA
ANOVA decomposition of function with random input variables provides ANOVA functionals (AFs), which contain information about the contributions of the input variables on the output variable(s). By embedding AFs into an appropriate reproducing kernel Hilbert space regarding their distributions, we propose an efficient statistical test of independence between the input variables and output variable(s). The resulting test statistic leads to new dependent measures of association between inputs and outputs that allow for i) dealing with any distribution of AFs, including the Cauchy distribution, ii) accounting for the necessary or desirable moments of AFs and the interactions among the input variables. In uncertainty quantification for mathematical models, a number of existing measures are special cases of this framework. We then provide unified and general global sensitivity indices and their consistent estimators, including asymptotic distributions. For Gaussian-distributed AFs, we obtain Sobol' indices and dependent generalized sensitivity indices using quadratic kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1