工具变量模型的识别和量纲稳健性检验

Manu Navjeevan
{"title":"工具变量模型的识别和量纲稳健性检验","authors":"Manu Navjeevan","doi":"arxiv-2311.14892","DOIUrl":null,"url":null,"abstract":"I propose a new identification-robust test for the structural parameter in a\nheteroskedastic linear instrumental variables model. The proposed test\nstatistic is similar in spirit to a jackknife version of the K-statistic and\nthe resulting test has exact asymptotic size so long as an auxiliary parameter\ncan be consistently estimated. This is possible under approximate sparsity even\nwhen the number of instruments is much larger than the sample size. As the\nnumber of instruments is allowed, but not required, to be large, the limiting\nbehavior of the test statistic is difficult to examine via existing central\nlimit theorems. Instead, I derive the asymptotic chi-squared distribution of\nthe test statistic using a direct Gaussian approximation technique. To improve\npower against certain alternatives, I propose a simple combination with the\nsup-score statistic of Belloni et al. (2012) based on a thresholding rule. I\ndemonstrate favorable size control and power properties in a simulation study\nand apply the new methods to revisit the effect of social spillovers in movie\nconsumption.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"EM-13 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Identification and Dimensionality Robust Test for Instrumental Variables Models\",\"authors\":\"Manu Navjeevan\",\"doi\":\"arxiv-2311.14892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I propose a new identification-robust test for the structural parameter in a\\nheteroskedastic linear instrumental variables model. The proposed test\\nstatistic is similar in spirit to a jackknife version of the K-statistic and\\nthe resulting test has exact asymptotic size so long as an auxiliary parameter\\ncan be consistently estimated. This is possible under approximate sparsity even\\nwhen the number of instruments is much larger than the sample size. As the\\nnumber of instruments is allowed, but not required, to be large, the limiting\\nbehavior of the test statistic is difficult to examine via existing central\\nlimit theorems. Instead, I derive the asymptotic chi-squared distribution of\\nthe test statistic using a direct Gaussian approximation technique. To improve\\npower against certain alternatives, I propose a simple combination with the\\nsup-score statistic of Belloni et al. (2012) based on a thresholding rule. I\\ndemonstrate favorable size control and power properties in a simulation study\\nand apply the new methods to revisit the effect of social spillovers in movie\\nconsumption.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"EM-13 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.14892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.14892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了非方差线性工具变量模型中结构参数的一种新的识别鲁棒性检验方法。所提出的检验统计量在精神上类似于k统计量的折刀版本,并且只要可以一致地估计辅助参数,所得到的检验就具有精确的渐近大小。这在近似稀疏度下是可能的,即使仪器的数量远远大于样本量。由于仪器的数量是允许的,但不是必需的,很大,检验统计量的限制行为很难通过现有的中心极限定理来检验。相反,我使用直接高斯近似技术推导检验统计量的渐近卡方分布。为了提高对某些替代方案的能力,我提出了一个简单的结合Belloni等人(2012)基于阈值规则的up-score统计。在模拟研究中展示有利的尺寸控制和功率特性,并应用新方法重新审视电影消费中的社会溢出效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Identification and Dimensionality Robust Test for Instrumental Variables Models
I propose a new identification-robust test for the structural parameter in a heteroskedastic linear instrumental variables model. The proposed test statistic is similar in spirit to a jackknife version of the K-statistic and the resulting test has exact asymptotic size so long as an auxiliary parameter can be consistently estimated. This is possible under approximate sparsity even when the number of instruments is much larger than the sample size. As the number of instruments is allowed, but not required, to be large, the limiting behavior of the test statistic is difficult to examine via existing central limit theorems. Instead, I derive the asymptotic chi-squared distribution of the test statistic using a direct Gaussian approximation technique. To improve power against certain alternatives, I propose a simple combination with the sup-score statistic of Belloni et al. (2012) based on a thresholding rule. I demonstrate favorable size control and power properties in a simulation study and apply the new methods to revisit the effect of social spillovers in movie consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1