Shengan Zheng, Morteza Hoseinzadeh, Steven Swanson, Linpeng Huang
{"title":"持久性存储器和磁盘的高性能分级文件系统","authors":"Shengan Zheng, Morteza Hoseinzadeh, Steven Swanson, Linpeng Huang","doi":"https://dl.acm.org/doi/10.1145/3580280","DOIUrl":null,"url":null,"abstract":"<p>Emerging fast, byte-addressable persistent memory (PM) promises substantial storage performance gains compared with traditional disks. We present TPFS, a tiered file system that combines PM and slow disks to create a storage system with near-PM performance and large capacity. TPFS steers incoming file input/output (I/O) to PM, dynamic random access memory (DRAM), or disk depending on the synchronicity, write size, and read frequency. TPFS profiles the application’s access stream online to predict the behavior of file access. In the background, TPFS estimates the “temperature” of file data and migrates the write-cold and read-hot file data from PM to disks. To fully utilize disk bandwidth, TPFS coalesces data blocks into large, sequential writes. Experimental results show that with a small amount of PM and a large solid-state drive (SSD), TPFS achieves up to 7.3× and 7.9× throughput improvement compared with EXT4 and XFS running on an SSD alone, respectively. As the amount of PM grows, TPFS’s performance improves until it matches the performance of a PM-only file system.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"97 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TPFS: A High-Performance Tiered File System for Persistent Memories and Disks\",\"authors\":\"Shengan Zheng, Morteza Hoseinzadeh, Steven Swanson, Linpeng Huang\",\"doi\":\"https://dl.acm.org/doi/10.1145/3580280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emerging fast, byte-addressable persistent memory (PM) promises substantial storage performance gains compared with traditional disks. We present TPFS, a tiered file system that combines PM and slow disks to create a storage system with near-PM performance and large capacity. TPFS steers incoming file input/output (I/O) to PM, dynamic random access memory (DRAM), or disk depending on the synchronicity, write size, and read frequency. TPFS profiles the application’s access stream online to predict the behavior of file access. In the background, TPFS estimates the “temperature” of file data and migrates the write-cold and read-hot file data from PM to disks. To fully utilize disk bandwidth, TPFS coalesces data blocks into large, sequential writes. Experimental results show that with a small amount of PM and a large solid-state drive (SSD), TPFS achieves up to 7.3× and 7.9× throughput improvement compared with EXT4 and XFS running on an SSD alone, respectively. As the amount of PM grows, TPFS’s performance improves until it matches the performance of a PM-only file system.</p>\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"97 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3580280\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3580280","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
TPFS: A High-Performance Tiered File System for Persistent Memories and Disks
Emerging fast, byte-addressable persistent memory (PM) promises substantial storage performance gains compared with traditional disks. We present TPFS, a tiered file system that combines PM and slow disks to create a storage system with near-PM performance and large capacity. TPFS steers incoming file input/output (I/O) to PM, dynamic random access memory (DRAM), or disk depending on the synchronicity, write size, and read frequency. TPFS profiles the application’s access stream online to predict the behavior of file access. In the background, TPFS estimates the “temperature” of file data and migrates the write-cold and read-hot file data from PM to disks. To fully utilize disk bandwidth, TPFS coalesces data blocks into large, sequential writes. Experimental results show that with a small amount of PM and a large solid-state drive (SSD), TPFS achieves up to 7.3× and 7.9× throughput improvement compared with EXT4 and XFS running on an SSD alone, respectively. As the amount of PM grows, TPFS’s performance improves until it matches the performance of a PM-only file system.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.