Shai Bergman, Niklas Cassel, Matias Bjørling, Mark Silberstein
{"title":"zswap:取消阻塞您的Swap","authors":"Shai Bergman, Niklas Cassel, Matias Bjørling, Mark Silberstein","doi":"https://dl.acm.org/doi/10.1145/3582434","DOIUrl":null,"url":null,"abstract":"<p>We introduce <i>ZNSwap</i> , a novel swap subsystem optimized for the recent Zoned Namespace (ZNS) SSDs. ZNSwap leverages ZNS’s explicit control over data management on the drive and introduces a space-efficient host-side Garbage Collector (GC) for swap storage co-designed with the OS swap logic. ZNSwap enables cross-layer optimizations, such as direct access to the in-kernel swap usage statistics by the GC to enable fine-grain swap storage management, and correct accounting of the GC bandwidth usage in the OS resource isolation mechanisms to improve performance isolation in multi-tenant environments. We evaluate ZNSwap using standard Linux swap benchmarks and two production key-value stores. ZNSwap shows significant performance benefits over the Linux swap on traditional SSDs, such as stable throughput for different memory access patterns, and 10× lower 99th percentile latency and 5× higher throughput for <monospace>memcached</monospace> key-value store under realistic usage scenarios.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"6 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZNSwap: un-Block your Swap\",\"authors\":\"Shai Bergman, Niklas Cassel, Matias Bjørling, Mark Silberstein\",\"doi\":\"https://dl.acm.org/doi/10.1145/3582434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce <i>ZNSwap</i> , a novel swap subsystem optimized for the recent Zoned Namespace (ZNS) SSDs. ZNSwap leverages ZNS’s explicit control over data management on the drive and introduces a space-efficient host-side Garbage Collector (GC) for swap storage co-designed with the OS swap logic. ZNSwap enables cross-layer optimizations, such as direct access to the in-kernel swap usage statistics by the GC to enable fine-grain swap storage management, and correct accounting of the GC bandwidth usage in the OS resource isolation mechanisms to improve performance isolation in multi-tenant environments. We evaluate ZNSwap using standard Linux swap benchmarks and two production key-value stores. ZNSwap shows significant performance benefits over the Linux swap on traditional SSDs, such as stable throughput for different memory access patterns, and 10× lower 99th percentile latency and 5× higher throughput for <monospace>memcached</monospace> key-value store under realistic usage scenarios.</p>\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3582434\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3582434","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
We introduce ZNSwap , a novel swap subsystem optimized for the recent Zoned Namespace (ZNS) SSDs. ZNSwap leverages ZNS’s explicit control over data management on the drive and introduces a space-efficient host-side Garbage Collector (GC) for swap storage co-designed with the OS swap logic. ZNSwap enables cross-layer optimizations, such as direct access to the in-kernel swap usage statistics by the GC to enable fine-grain swap storage management, and correct accounting of the GC bandwidth usage in the OS resource isolation mechanisms to improve performance isolation in multi-tenant environments. We evaluate ZNSwap using standard Linux swap benchmarks and two production key-value stores. ZNSwap shows significant performance benefits over the Linux swap on traditional SSDs, such as stable throughput for different memory access patterns, and 10× lower 99th percentile latency and 5× higher throughput for memcached key-value store under realistic usage scenarios.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.