自相关跳跃事件的一致性和鲁棒性检验

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2022-08-29 DOI:10.1093/jjfinec/nbac031
Simon Kwok
{"title":"自相关跳跃事件的一致性和鲁棒性检验","authors":"Simon Kwok","doi":"10.1093/jjfinec/nbac031","DOIUrl":null,"url":null,"abstract":"We develop a nonparametric test for the temporal dependence of jump occurrences in the population. The test is consistent against all pairwise serial dependence, and is robust to the jump activity level and the choice of sampling scheme. We establish asymptotic normality and local power property for a rich set of local alternatives, including both self-exciting and/or self-inhibitory jumps. Simulation study confirms the robustness of the test and reveals its competitive size and power performance over existing tests. In an empirical study on high-frequency stock returns, our procedure uncovers a wide array of autocorrelation profiles of jump occurrences for different stocks in different time periods.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":"8 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Consistent and Robust Test for Autocorrelated Jump Occurrences\",\"authors\":\"Simon Kwok\",\"doi\":\"10.1093/jjfinec/nbac031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a nonparametric test for the temporal dependence of jump occurrences in the population. The test is consistent against all pairwise serial dependence, and is robust to the jump activity level and the choice of sampling scheme. We establish asymptotic normality and local power property for a rich set of local alternatives, including both self-exciting and/or self-inhibitory jumps. Simulation study confirms the robustness of the test and reveals its competitive size and power performance over existing tests. In an empirical study on high-frequency stock returns, our procedure uncovers a wide array of autocorrelation profiles of jump occurrences for different stocks in different time periods.\",\"PeriodicalId\":47596,\"journal\":{\"name\":\"Journal of Financial Econometrics\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1093/jjfinec/nbac031\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/jjfinec/nbac031","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种非参数检验,用于检验种群中跳跃事件的时间依赖性。该测试对所有成对序列依赖都是一致的,并且对跳跃活动水平和采样方案的选择具有鲁棒性。我们建立了一组丰富的局部选择的渐近正态性和局部幂性质,包括自激励和/或自抑制跳跃。仿真研究证实了该测试的鲁棒性,并揭示了其与现有测试相比具有竞争力的尺寸和功率性能。在高频股票回报的实证研究中,我们的程序揭示了不同股票在不同时间段内跳跃发生的广泛自相关概况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Consistent and Robust Test for Autocorrelated Jump Occurrences
We develop a nonparametric test for the temporal dependence of jump occurrences in the population. The test is consistent against all pairwise serial dependence, and is robust to the jump activity level and the choice of sampling scheme. We establish asymptotic normality and local power property for a rich set of local alternatives, including both self-exciting and/or self-inhibitory jumps. Simulation study confirms the robustness of the test and reveals its competitive size and power performance over existing tests. In an empirical study on high-frequency stock returns, our procedure uncovers a wide array of autocorrelation profiles of jump occurrences for different stocks in different time periods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1