Wei Luan, Meiyun Zheng, Youlin Yang, Yi Chen, Xiahui Zhang, Lingping Zhu, Chenxiao Lin
{"title":"用于卵巢癌细胞的1-氨基吡啶包覆金纳米材料和还原氧化石墨烯纳米复合材料的聚合制备","authors":"Wei Luan, Meiyun Zheng, Youlin Yang, Yi Chen, Xiahui Zhang, Lingping Zhu, Chenxiao Lin","doi":"10.1007/s13404-023-00339-x","DOIUrl":null,"url":null,"abstract":"<div><p>Since their discovery, graphene nanocomposites have attracted much attention for their potential use in many biological applications. Herein, we examined the highly reduced graphene oxide (HRGO) and gold nanomaterial (AuNM)-based (HRGO/Au@AP) nanocomposite for ovarian cancer and apoptosis-inducing abilities, the nanomaterials’ anticancer activities against human ovarian cancer cell lines (SKOV3 and A2780). HRGO was functionalized with the 1-aminopyridine (AP) as a potential stabilizing agent to improve the sample’s solubility and bioavailability. The surface morphology and structure of the nanocomposites were examined by high-resolution transmission electron microscopy. The results of an anticancer study comparing HRGO, HRGO/Au, and HRGO/Au@AP nanocomposites showed a greater capacity to induce apoptosis, the apoptosis assays (AO-EB, DAPI, and Annexin V-FITC/PI staining) and reactive oxygen species (ROS) measurements on SKOV3 and A2780 cells. This data suggests that HRGO/Au@AP promotes potent apoptosis in human ovarian cancer cells.</p></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":"56 4","pages":"167 - 178"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A convergent fabrication of 1-aminopyridine-capped gold nanomaterials and reduced graphene oxide nanocomposites for ovarian cancer cells\",\"authors\":\"Wei Luan, Meiyun Zheng, Youlin Yang, Yi Chen, Xiahui Zhang, Lingping Zhu, Chenxiao Lin\",\"doi\":\"10.1007/s13404-023-00339-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since their discovery, graphene nanocomposites have attracted much attention for their potential use in many biological applications. Herein, we examined the highly reduced graphene oxide (HRGO) and gold nanomaterial (AuNM)-based (HRGO/Au@AP) nanocomposite for ovarian cancer and apoptosis-inducing abilities, the nanomaterials’ anticancer activities against human ovarian cancer cell lines (SKOV3 and A2780). HRGO was functionalized with the 1-aminopyridine (AP) as a potential stabilizing agent to improve the sample’s solubility and bioavailability. The surface morphology and structure of the nanocomposites were examined by high-resolution transmission electron microscopy. The results of an anticancer study comparing HRGO, HRGO/Au, and HRGO/Au@AP nanocomposites showed a greater capacity to induce apoptosis, the apoptosis assays (AO-EB, DAPI, and Annexin V-FITC/PI staining) and reactive oxygen species (ROS) measurements on SKOV3 and A2780 cells. This data suggests that HRGO/Au@AP promotes potent apoptosis in human ovarian cancer cells.</p></div>\",\"PeriodicalId\":581,\"journal\":{\"name\":\"Gold Bulletin\",\"volume\":\"56 4\",\"pages\":\"167 - 178\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Bulletin\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13404-023-00339-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-023-00339-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
A convergent fabrication of 1-aminopyridine-capped gold nanomaterials and reduced graphene oxide nanocomposites for ovarian cancer cells
Since their discovery, graphene nanocomposites have attracted much attention for their potential use in many biological applications. Herein, we examined the highly reduced graphene oxide (HRGO) and gold nanomaterial (AuNM)-based (HRGO/Au@AP) nanocomposite for ovarian cancer and apoptosis-inducing abilities, the nanomaterials’ anticancer activities against human ovarian cancer cell lines (SKOV3 and A2780). HRGO was functionalized with the 1-aminopyridine (AP) as a potential stabilizing agent to improve the sample’s solubility and bioavailability. The surface morphology and structure of the nanocomposites were examined by high-resolution transmission electron microscopy. The results of an anticancer study comparing HRGO, HRGO/Au, and HRGO/Au@AP nanocomposites showed a greater capacity to induce apoptosis, the apoptosis assays (AO-EB, DAPI, and Annexin V-FITC/PI staining) and reactive oxygen species (ROS) measurements on SKOV3 and A2780 cells. This data suggests that HRGO/Au@AP promotes potent apoptosis in human ovarian cancer cells.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.