{"title":"广义Ramsey数Erdős-Gyárfás问题的新上界","authors":"Alex Cameron, Emily Heath","doi":"10.1017/s0963548322000293","DOIUrl":null,"url":null,"abstract":"A <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline1.png\" /><jats:tex-math> $(p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colouring of a graph <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline2.png\" /><jats:tex-math> $G$ </jats:tex-math></jats:alternatives></jats:inline-formula> is an edge-colouring of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline3.png\" /><jats:tex-math> $G$ </jats:tex-math></jats:alternatives></jats:inline-formula> which assigns at least <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline4.png\" /><jats:tex-math> $q$ </jats:tex-math></jats:alternatives></jats:inline-formula> colours to each <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline5.png\" /><jats:tex-math> $p$ </jats:tex-math></jats:alternatives></jats:inline-formula>-clique. The problem of determining the minimum number of colours, <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline6.png\" /><jats:tex-math> $f(n,p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula>, needed to give a <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline7.png\" /><jats:tex-math> $(p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colouring of the complete graph <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline8.png\" /><jats:tex-math> $K_n$ </jats:tex-math></jats:alternatives></jats:inline-formula> is a natural generalization of the well-known problem of identifying the diagonal Ramsey numbers <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline9.png\" /><jats:tex-math> $r_k(p)$ </jats:tex-math></jats:alternatives></jats:inline-formula>. The best-known general upper bound on <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline10.png\" /><jats:tex-math> $f(n,p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula> was given by Erdős and Gyárfás in 1997 using a probabilistic argument. Since then, improved bounds in the cases where <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline11.png\" /><jats:tex-math> $p=q$ </jats:tex-math></jats:alternatives></jats:inline-formula> have been obtained only for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline12.png\" /><jats:tex-math> $p\\in \\{4,5\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula>, each of which was proved by giving a deterministic construction which combined a <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline13.png\" /><jats:tex-math> $(p,p-1)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colouring using few colours with an algebraic colouring.In this paper, we provide a framework for proving new upper bounds on <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline14.png\" /><jats:tex-math> $f(n,p,p)$ </jats:tex-math></jats:alternatives></jats:inline-formula> in the style of these earlier constructions. We characterize all colourings of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline15.png\" /><jats:tex-math> $p$ </jats:tex-math></jats:alternatives></jats:inline-formula>-cliques with <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline16.png\" /><jats:tex-math> $p-1$ </jats:tex-math></jats:alternatives></jats:inline-formula> colours which can appear in our modified version of the <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline17.png\" /><jats:tex-math> $(p,p-1)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colouring of Conlon, Fox, Lee, and Sudakov. This allows us to greatly reduce the amount of case-checking required in identifying <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline18.png\" /><jats:tex-math> $(p,p)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colourings, which would otherwise make this problem intractable for large values of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline19.png\" /><jats:tex-math> $p$ </jats:tex-math></jats:alternatives></jats:inline-formula>. In addition, we generalize our algebraic colouring from the <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline20.png\" /><jats:tex-math> $p=5$ </jats:tex-math></jats:alternatives></jats:inline-formula> setting and use this to give improved upper bounds on <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline21.png\" /><jats:tex-math> $f(n,6,6)$ </jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline22.png\" /><jats:tex-math> $f(n,8,8)$ </jats:tex-math></jats:alternatives></jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"New upper bounds for the Erdős-Gyárfás problem on generalized Ramsey numbers\",\"authors\":\"Alex Cameron, Emily Heath\",\"doi\":\"10.1017/s0963548322000293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline1.png\\\" /><jats:tex-math> $(p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colouring of a graph <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline2.png\\\" /><jats:tex-math> $G$ </jats:tex-math></jats:alternatives></jats:inline-formula> is an edge-colouring of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline3.png\\\" /><jats:tex-math> $G$ </jats:tex-math></jats:alternatives></jats:inline-formula> which assigns at least <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline4.png\\\" /><jats:tex-math> $q$ </jats:tex-math></jats:alternatives></jats:inline-formula> colours to each <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline5.png\\\" /><jats:tex-math> $p$ </jats:tex-math></jats:alternatives></jats:inline-formula>-clique. The problem of determining the minimum number of colours, <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline6.png\\\" /><jats:tex-math> $f(n,p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula>, needed to give a <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline7.png\\\" /><jats:tex-math> $(p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colouring of the complete graph <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline8.png\\\" /><jats:tex-math> $K_n$ </jats:tex-math></jats:alternatives></jats:inline-formula> is a natural generalization of the well-known problem of identifying the diagonal Ramsey numbers <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline9.png\\\" /><jats:tex-math> $r_k(p)$ </jats:tex-math></jats:alternatives></jats:inline-formula>. The best-known general upper bound on <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline10.png\\\" /><jats:tex-math> $f(n,p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula> was given by Erdős and Gyárfás in 1997 using a probabilistic argument. Since then, improved bounds in the cases where <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline11.png\\\" /><jats:tex-math> $p=q$ </jats:tex-math></jats:alternatives></jats:inline-formula> have been obtained only for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline12.png\\\" /><jats:tex-math> $p\\\\in \\\\{4,5\\\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula>, each of which was proved by giving a deterministic construction which combined a <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline13.png\\\" /><jats:tex-math> $(p,p-1)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colouring using few colours with an algebraic colouring.In this paper, we provide a framework for proving new upper bounds on <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline14.png\\\" /><jats:tex-math> $f(n,p,p)$ </jats:tex-math></jats:alternatives></jats:inline-formula> in the style of these earlier constructions. We characterize all colourings of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline15.png\\\" /><jats:tex-math> $p$ </jats:tex-math></jats:alternatives></jats:inline-formula>-cliques with <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline16.png\\\" /><jats:tex-math> $p-1$ </jats:tex-math></jats:alternatives></jats:inline-formula> colours which can appear in our modified version of the <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline17.png\\\" /><jats:tex-math> $(p,p-1)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colouring of Conlon, Fox, Lee, and Sudakov. This allows us to greatly reduce the amount of case-checking required in identifying <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline18.png\\\" /><jats:tex-math> $(p,p)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colourings, which would otherwise make this problem intractable for large values of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline19.png\\\" /><jats:tex-math> $p$ </jats:tex-math></jats:alternatives></jats:inline-formula>. In addition, we generalize our algebraic colouring from the <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline20.png\\\" /><jats:tex-math> $p=5$ </jats:tex-math></jats:alternatives></jats:inline-formula> setting and use this to give improved upper bounds on <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline21.png\\\" /><jats:tex-math> $f(n,6,6)$ </jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000293_inline22.png\\\" /><jats:tex-math> $f(n,8,8)$ </jats:tex-math></jats:alternatives></jats:inline-formula>.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548322000293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548322000293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New upper bounds for the Erdős-Gyárfás problem on generalized Ramsey numbers
A $(p,q)$ -colouring of a graph $G$ is an edge-colouring of $G$ which assigns at least $q$ colours to each $p$ -clique. The problem of determining the minimum number of colours, $f(n,p,q)$ , needed to give a $(p,q)$ -colouring of the complete graph $K_n$ is a natural generalization of the well-known problem of identifying the diagonal Ramsey numbers $r_k(p)$ . The best-known general upper bound on $f(n,p,q)$ was given by Erdős and Gyárfás in 1997 using a probabilistic argument. Since then, improved bounds in the cases where $p=q$ have been obtained only for $p\in \{4,5\}$ , each of which was proved by giving a deterministic construction which combined a $(p,p-1)$ -colouring using few colours with an algebraic colouring.In this paper, we provide a framework for proving new upper bounds on $f(n,p,p)$ in the style of these earlier constructions. We characterize all colourings of $p$ -cliques with $p-1$ colours which can appear in our modified version of the $(p,p-1)$ -colouring of Conlon, Fox, Lee, and Sudakov. This allows us to greatly reduce the amount of case-checking required in identifying $(p,p)$ -colourings, which would otherwise make this problem intractable for large values of $p$ . In addition, we generalize our algebraic colouring from the $p=5$ setting and use this to give improved upper bounds on $f(n,6,6)$ and $f(n,8,8)$ .