{"title":"偏振随机-SAT","authors":"Joel Larsson Danielsson, Klas Markström","doi":"10.1017/s0963548323000226","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study a variation of the random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT problem, called polarised random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT, which contains both the classical random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT model and the random version of monotone <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT another well-known NP-complete version of SAT. In this model there is a polarisation parameter <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>, and in half of the clauses each variable occurs negated with probability <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> and pure otherwise, while in the other half the probabilities are interchanged. For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$p=1/2$</span></span></img></span></span> we get the classical random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT model, and at the other extreme we have the fully polarised model where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$p=0$</span></span></img></span></span>, or 1. Here there are only two types of clauses: clauses where all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> variables occur pure, and clauses where all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> variables occur negated. That is, for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$p=0$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$p=1$</span></span></img></span></span>, we get an instance of random <span>monotone</span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT.</p><p>We show that the threshold of satisfiability does not decrease as <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline16.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> moves away from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline17.png\"><span data-mathjax-type=\"texmath\"><span>$\\frac{1}{2}$</span></span></img></span></span> and thus that the satisfiability threshold for polarised random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline18.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline19.png\"><span data-mathjax-type=\"texmath\"><span>$p\\neq \\frac{1}{2}$</span></span></img></span></span> is an upper bound on the threshold for random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline20.png\"/><span data-mathjax-type=\"texmath\"><span>$k$</span></span></span></span>-SAT. Hence the satisfiability threshold for random monotone <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline21.png\"/><span data-mathjax-type=\"texmath\"><span>$k$</span></span></span></span>-SAT is at least as large as for random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline22.png\"/><span data-mathjax-type=\"texmath\"><span>$k$</span></span></span></span>-SAT, and we conjecture that asymptotically, for a fixed <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline23.png\"/><span data-mathjax-type=\"texmath\"><span>$k$</span></span></span></span>, the two thresholds coincide.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarised random -SAT\",\"authors\":\"Joel Larsson Danielsson, Klas Markström\",\"doi\":\"10.1017/s0963548323000226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study a variation of the random <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-SAT problem, called polarised random <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-SAT, which contains both the classical random <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-SAT model and the random version of monotone <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-SAT another well-known NP-complete version of SAT. In this model there is a polarisation parameter <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span></img></span></span>, and in half of the clauses each variable occurs negated with probability <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span></img></span></span> and pure otherwise, while in the other half the probabilities are interchanged. For <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p=1/2$</span></span></img></span></span> we get the classical random <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-SAT model, and at the other extreme we have the fully polarised model where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p=0$</span></span></img></span></span>, or 1. Here there are only two types of clauses: clauses where all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span> variables occur pure, and clauses where all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span> variables occur negated. That is, for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p=0$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline14.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p=1$</span></span></img></span></span>, we get an instance of random <span>monotone</span> <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline15.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-SAT.</p><p>We show that the threshold of satisfiability does not decrease as <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline16.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span></img></span></span> moves away from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline17.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\frac{1}{2}$</span></span></img></span></span> and thus that the satisfiability threshold for polarised random <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline18.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-SAT with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline19.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p\\\\neq \\\\frac{1}{2}$</span></span></img></span></span> is an upper bound on the threshold for random <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline20.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></span></span>-SAT. Hence the satisfiability threshold for random monotone <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline21.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></span></span>-SAT is at least as large as for random <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline22.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></span></span>-SAT, and we conjecture that asymptotically, for a fixed <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline23.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></span></span>, the two thresholds coincide.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we study a variation of the random $k$-SAT problem, called polarised random $k$-SAT, which contains both the classical random $k$-SAT model and the random version of monotone $k$-SAT another well-known NP-complete version of SAT. In this model there is a polarisation parameter $p$, and in half of the clauses each variable occurs negated with probability $p$ and pure otherwise, while in the other half the probabilities are interchanged. For $p=1/2$ we get the classical random $k$-SAT model, and at the other extreme we have the fully polarised model where $p=0$, or 1. Here there are only two types of clauses: clauses where all $k$ variables occur pure, and clauses where all $k$ variables occur negated. That is, for $p=0$, and $p=1$, we get an instance of random monotone$k$-SAT.
We show that the threshold of satisfiability does not decrease as $p$ moves away from $\frac{1}{2}$ and thus that the satisfiability threshold for polarised random $k$-SAT with $p\neq \frac{1}{2}$ is an upper bound on the threshold for random $k$-SAT. Hence the satisfiability threshold for random monotone $k$-SAT is at least as large as for random $k$-SAT, and we conjecture that asymptotically, for a fixed $k$, the two thresholds coincide.