{"title":"关于平均拉伸小的超立方体上的映射","authors":"Lucas Boczkowski, Igor Shinkar","doi":"10.1017/s0963548322000281","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline1.png\" /><jats:tex-math> $A \\subseteq \\{0,1\\}^n$ </jats:tex-math></jats:alternatives></jats:inline-formula> be a set of size <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline2.png\" /><jats:tex-math> $2^{n-1}$ </jats:tex-math></jats:alternatives></jats:inline-formula>, and let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline3.png\" /><jats:tex-math> $\\phi \\,:\\, \\{0,1\\}^{n-1} \\to A$ </jats:tex-math></jats:alternatives></jats:inline-formula> be a bijection. We define <jats:italic>the average stretch</jats:italic> of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline4.png\" /><jats:tex-math> $\\phi$ </jats:tex-math></jats:alternatives></jats:inline-formula> as<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548322000281_eqnU1.png\" /><jats:tex-math> \\begin{equation*} {\\sf avgStretch}(\\phi ) = {\\mathbb E}[{{\\sf dist}}(\\phi (x),\\phi (x'))], \\end{equation*} </jats:tex-math></jats:alternatives></jats:disp-formula>where the expectation is taken over uniformly random <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline5.png\" /><jats:tex-math> $x,x' \\in \\{0,1\\}^{n-1}$ </jats:tex-math></jats:alternatives></jats:inline-formula> that differ in exactly one coordinate.In this paper, we continue the line of research studying mappings on the discrete hypercube with small average stretch. We prove the following results.<jats:list list-type=\"bullet\"><jats:list-item>For any set <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline6.png\" /><jats:tex-math> $A \\subseteq \\{0,1\\}^n$ </jats:tex-math></jats:alternatives></jats:inline-formula> of density <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline7.png\" /><jats:tex-math> $1/2$ </jats:tex-math></jats:alternatives></jats:inline-formula> there exists a bijection <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline8.png\" /><jats:tex-math> $\\phi _A \\,:\\, \\{0,1\\}^{n-1} \\to A$ </jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline9.png\" /><jats:tex-math> ${\\sf avgStretch}(\\phi _A) = O\\left(\\sqrt{n}\\right)$ </jats:tex-math></jats:alternatives></jats:inline-formula>.</jats:list-item><jats:list-item>For <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline10.png\" /><jats:tex-math> $n = 3^k$ </jats:tex-math></jats:alternatives></jats:inline-formula> let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline11.png\" /><jats:tex-math> ${A_{\\textsf{rec-maj}}} = \\{x \\in \\{0,1\\}^n \\,:\\,{\\textsf{rec-maj}}(x) = 1\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula>, where <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline12.png\" /><jats:tex-math> ${\\textsf{rec-maj}} \\,:\\, \\{0,1\\}^n \\to \\{0,1\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula> is the function <jats:italic>recursive majority of 3’s</jats:italic>. There exists a bijection <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline13.png\" /><jats:tex-math> $\\phi _{{\\textsf{rec-maj}}} \\,:\\, \\{0,1\\}^{n-1} \\to{A_{\\textsf{rec-maj}}}$ </jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline14.png\" /><jats:tex-math> ${\\sf avgStretch}(\\phi _{{\\textsf{rec-maj}}}) = O(1)$ </jats:tex-math></jats:alternatives></jats:inline-formula>.</jats:list-item><jats:list-item>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline15.png\" /><jats:tex-math> ${A_{{\\sf tribes}}} = \\{x \\in \\{0,1\\}^n \\,:\\,{\\sf tribes}(x) = 1\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula>. There exists a bijection <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline16.png\" /><jats:tex-math> $\\phi _{{\\sf tribes}} \\,:\\, \\{0,1\\}^{n-1} \\to{A_{{\\sf tribes}}}$ </jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline17.png\" /><jats:tex-math> ${\\sf avgStretch}(\\phi _{{\\sf tribes}}) = O(\\!\\log (n))$ </jats:tex-math></jats:alternatives></jats:inline-formula>.</jats:list-item></jats:list>These results answer the questions raised by Benjamini, Cohen, and Shinkar (Isr. J. Math 2016).","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On mappings on the hypercube with small average stretch\",\"authors\":\"Lucas Boczkowski, Igor Shinkar\",\"doi\":\"10.1017/s0963548322000281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline1.png\\\" /><jats:tex-math> $A \\\\subseteq \\\\{0,1\\\\}^n$ </jats:tex-math></jats:alternatives></jats:inline-formula> be a set of size <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline2.png\\\" /><jats:tex-math> $2^{n-1}$ </jats:tex-math></jats:alternatives></jats:inline-formula>, and let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline3.png\\\" /><jats:tex-math> $\\\\phi \\\\,:\\\\, \\\\{0,1\\\\}^{n-1} \\\\to A$ </jats:tex-math></jats:alternatives></jats:inline-formula> be a bijection. We define <jats:italic>the average stretch</jats:italic> of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline4.png\\\" /><jats:tex-math> $\\\\phi$ </jats:tex-math></jats:alternatives></jats:inline-formula> as<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0963548322000281_eqnU1.png\\\" /><jats:tex-math> \\\\begin{equation*} {\\\\sf avgStretch}(\\\\phi ) = {\\\\mathbb E}[{{\\\\sf dist}}(\\\\phi (x),\\\\phi (x'))], \\\\end{equation*} </jats:tex-math></jats:alternatives></jats:disp-formula>where the expectation is taken over uniformly random <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline5.png\\\" /><jats:tex-math> $x,x' \\\\in \\\\{0,1\\\\}^{n-1}$ </jats:tex-math></jats:alternatives></jats:inline-formula> that differ in exactly one coordinate.In this paper, we continue the line of research studying mappings on the discrete hypercube with small average stretch. We prove the following results.<jats:list list-type=\\\"bullet\\\"><jats:list-item>For any set <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline6.png\\\" /><jats:tex-math> $A \\\\subseteq \\\\{0,1\\\\}^n$ </jats:tex-math></jats:alternatives></jats:inline-formula> of density <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline7.png\\\" /><jats:tex-math> $1/2$ </jats:tex-math></jats:alternatives></jats:inline-formula> there exists a bijection <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline8.png\\\" /><jats:tex-math> $\\\\phi _A \\\\,:\\\\, \\\\{0,1\\\\}^{n-1} \\\\to A$ </jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline9.png\\\" /><jats:tex-math> ${\\\\sf avgStretch}(\\\\phi _A) = O\\\\left(\\\\sqrt{n}\\\\right)$ </jats:tex-math></jats:alternatives></jats:inline-formula>.</jats:list-item><jats:list-item>For <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline10.png\\\" /><jats:tex-math> $n = 3^k$ </jats:tex-math></jats:alternatives></jats:inline-formula> let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline11.png\\\" /><jats:tex-math> ${A_{\\\\textsf{rec-maj}}} = \\\\{x \\\\in \\\\{0,1\\\\}^n \\\\,:\\\\,{\\\\textsf{rec-maj}}(x) = 1\\\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula>, where <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline12.png\\\" /><jats:tex-math> ${\\\\textsf{rec-maj}} \\\\,:\\\\, \\\\{0,1\\\\}^n \\\\to \\\\{0,1\\\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula> is the function <jats:italic>recursive majority of 3’s</jats:italic>. There exists a bijection <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline13.png\\\" /><jats:tex-math> $\\\\phi _{{\\\\textsf{rec-maj}}} \\\\,:\\\\, \\\\{0,1\\\\}^{n-1} \\\\to{A_{\\\\textsf{rec-maj}}}$ </jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline14.png\\\" /><jats:tex-math> ${\\\\sf avgStretch}(\\\\phi _{{\\\\textsf{rec-maj}}}) = O(1)$ </jats:tex-math></jats:alternatives></jats:inline-formula>.</jats:list-item><jats:list-item>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline15.png\\\" /><jats:tex-math> ${A_{{\\\\sf tribes}}} = \\\\{x \\\\in \\\\{0,1\\\\}^n \\\\,:\\\\,{\\\\sf tribes}(x) = 1\\\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula>. There exists a bijection <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline16.png\\\" /><jats:tex-math> $\\\\phi _{{\\\\sf tribes}} \\\\,:\\\\, \\\\{0,1\\\\}^{n-1} \\\\to{A_{{\\\\sf tribes}}}$ </jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000281_inline17.png\\\" /><jats:tex-math> ${\\\\sf avgStretch}(\\\\phi _{{\\\\sf tribes}}) = O(\\\\!\\\\log (n))$ </jats:tex-math></jats:alternatives></jats:inline-formula>.</jats:list-item></jats:list>These results answer the questions raised by Benjamini, Cohen, and Shinkar (Isr. J. Math 2016).\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548322000281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548322000281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On mappings on the hypercube with small average stretch
Let $A \subseteq \{0,1\}^n$ be a set of size $2^{n-1}$ , and let $\phi \,:\, \{0,1\}^{n-1} \to A$ be a bijection. We define the average stretch of $\phi$ as \begin{equation*} {\sf avgStretch}(\phi ) = {\mathbb E}[{{\sf dist}}(\phi (x),\phi (x'))], \end{equation*} where the expectation is taken over uniformly random $x,x' \in \{0,1\}^{n-1}$ that differ in exactly one coordinate.In this paper, we continue the line of research studying mappings on the discrete hypercube with small average stretch. We prove the following results.For any set $A \subseteq \{0,1\}^n$ of density $1/2$ there exists a bijection $\phi _A \,:\, \{0,1\}^{n-1} \to A$ such that ${\sf avgStretch}(\phi _A) = O\left(\sqrt{n}\right)$ .For $n = 3^k$ let ${A_{\textsf{rec-maj}}} = \{x \in \{0,1\}^n \,:\,{\textsf{rec-maj}}(x) = 1\}$ , where ${\textsf{rec-maj}} \,:\, \{0,1\}^n \to \{0,1\}$ is the function recursive majority of 3’s. There exists a bijection $\phi _{{\textsf{rec-maj}}} \,:\, \{0,1\}^{n-1} \to{A_{\textsf{rec-maj}}}$ such that ${\sf avgStretch}(\phi _{{\textsf{rec-maj}}}) = O(1)$ .Let ${A_{{\sf tribes}}} = \{x \in \{0,1\}^n \,:\,{\sf tribes}(x) = 1\}$ . There exists a bijection $\phi _{{\sf tribes}} \,:\, \{0,1\}^{n-1} \to{A_{{\sf tribes}}}$ such that ${\sf avgStretch}(\phi _{{\sf tribes}}) = O(\!\log (n))$ .These results answer the questions raised by Benjamini, Cohen, and Shinkar (Isr. J. Math 2016).