求助PDF
{"title":"伯努利钟:通过循环卷积对伯努利多项式的概率和组合解释","authors":"Yassine El Maazouz, Jim Pitman","doi":"10.1017/s0963548323000421","DOIUrl":null,"url":null,"abstract":"The factorially normalized Bernoulli polynomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline1.png\" /> <jats:tex-math> $b_n(x) = B_n(x)/n!$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are known to be characterized by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline2.png\" /> <jats:tex-math> $b_0(x) = 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline3.png\" /> <jats:tex-math> $b_n(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline4.png\" /> <jats:tex-math> $n \\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the anti-derivative of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline5.png\" /> <jats:tex-math> $b_{n-1}(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> subject to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline6.png\" /> <jats:tex-math> $\\int _0^1 b_n(x) dx = 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We offer a related characterization: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline7.png\" /> <jats:tex-math> $b_1(x) = x - 1/2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline8.png\" /> <jats:tex-math> $({-}1)^{n-1} b_n(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline9.png\" /> <jats:tex-math> $n \\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline10.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-fold circular convolution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline11.png\" /> <jats:tex-math> $b_1(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with itself. Equivalently, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline12.png\" /> <jats:tex-math> $1 - 2^n b_n(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the probability density at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline13.png\" /> <jats:tex-math> $x \\in (0,1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the fractional part of a sum of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline14.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independent random variables, each with the beta<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline15.png\" /> <jats:tex-math> $(1,2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> probability density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline16.png\" /> <jats:tex-math> $2(1-x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline17.png\" /> <jats:tex-math> $x \\in (0,1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This result has a novel combinatorial analog, the <jats:italic>Bernoulli clock</jats:italic>: mark the hours of a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline18.png\" /> <jats:tex-math> $2 n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hour clock by a uniformly random permutation of the multiset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline19.png\" /> <jats:tex-math> $\\{1,1, 2,2, \\ldots, n,n\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, meaning pick two different hours uniformly at random from the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline20.png\" /> <jats:tex-math> $2 n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hours and mark them <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline21.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then pick two different hours uniformly at random from the remaining <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline22.png\" /> <jats:tex-math> $2 n - 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hours and mark them <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline23.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and so on. Starting from hour <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline24.png\" /> <jats:tex-math> $0 = 2n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, move clockwise to the first hour marked <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline25.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, continue clockwise to the first hour marked <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline26.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and so on, continuing clockwise around the Bernoulli clock until the first of the two hours marked <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline27.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is encountered, at a random hour <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline28.png\" /> <jats:tex-math> $I_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline29.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline30.png\" /> <jats:tex-math> $2n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that for each positive integer <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline31.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the event <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline32.png\" /> <jats:tex-math> $( I_n = 1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has probability <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline33.png\" /> <jats:tex-math> $(1 - 2^n b_n(0))/(2n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline34.png\" /> <jats:tex-math> $n! b_n(0) = B_n(0)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline35.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th Bernoulli number. For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline36.png\" /> <jats:tex-math> $ 1 \\le k \\le 2 n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the difference <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline37.png\" /> <jats:tex-math> $\\delta _n(k)\\,:\\!=\\, 1/(2n) -{\\mathbb{P}}( I_n = k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a polynomial function of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline38.png\" /> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with the surprising symmetry <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline39.png\" /> <jats:tex-math> $\\delta _n( 2 n + 1 - k) = ({-}1)^n \\delta _n(k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is a combinatorial analog of the well-known symmetry of Bernoulli polynomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline40.png\" /> <jats:tex-math> $b_n(1-x) = ({-}1)^n b_n(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution\",\"authors\":\"Yassine El Maazouz, Jim Pitman\",\"doi\":\"10.1017/s0963548323000421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The factorially normalized Bernoulli polynomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline1.png\\\" /> <jats:tex-math> $b_n(x) = B_n(x)/n!$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are known to be characterized by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline2.png\\\" /> <jats:tex-math> $b_0(x) = 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline3.png\\\" /> <jats:tex-math> $b_n(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline4.png\\\" /> <jats:tex-math> $n \\\\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the anti-derivative of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline5.png\\\" /> <jats:tex-math> $b_{n-1}(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> subject to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline6.png\\\" /> <jats:tex-math> $\\\\int _0^1 b_n(x) dx = 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We offer a related characterization: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline7.png\\\" /> <jats:tex-math> $b_1(x) = x - 1/2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline8.png\\\" /> <jats:tex-math> $({-}1)^{n-1} b_n(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline9.png\\\" /> <jats:tex-math> $n \\\\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline10.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-fold circular convolution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline11.png\\\" /> <jats:tex-math> $b_1(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with itself. Equivalently, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline12.png\\\" /> <jats:tex-math> $1 - 2^n b_n(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the probability density at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline13.png\\\" /> <jats:tex-math> $x \\\\in (0,1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the fractional part of a sum of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline14.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independent random variables, each with the beta<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline15.png\\\" /> <jats:tex-math> $(1,2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> probability density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline16.png\\\" /> <jats:tex-math> $2(1-x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline17.png\\\" /> <jats:tex-math> $x \\\\in (0,1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This result has a novel combinatorial analog, the <jats:italic>Bernoulli clock</jats:italic>: mark the hours of a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline18.png\\\" /> <jats:tex-math> $2 n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hour clock by a uniformly random permutation of the multiset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline19.png\\\" /> <jats:tex-math> $\\\\{1,1, 2,2, \\\\ldots, n,n\\\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, meaning pick two different hours uniformly at random from the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline20.png\\\" /> <jats:tex-math> $2 n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hours and mark them <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline21.png\\\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then pick two different hours uniformly at random from the remaining <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline22.png\\\" /> <jats:tex-math> $2 n - 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hours and mark them <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline23.png\\\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and so on. Starting from hour <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline24.png\\\" /> <jats:tex-math> $0 = 2n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, move clockwise to the first hour marked <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline25.png\\\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, continue clockwise to the first hour marked <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline26.png\\\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and so on, continuing clockwise around the Bernoulli clock until the first of the two hours marked <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline27.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is encountered, at a random hour <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline28.png\\\" /> <jats:tex-math> $I_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline29.png\\\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline30.png\\\" /> <jats:tex-math> $2n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that for each positive integer <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline31.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the event <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline32.png\\\" /> <jats:tex-math> $( I_n = 1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has probability <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline33.png\\\" /> <jats:tex-math> $(1 - 2^n b_n(0))/(2n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline34.png\\\" /> <jats:tex-math> $n! b_n(0) = B_n(0)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline35.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th Bernoulli number. For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline36.png\\\" /> <jats:tex-math> $ 1 \\\\le k \\\\le 2 n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the difference <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline37.png\\\" /> <jats:tex-math> $\\\\delta _n(k)\\\\,:\\\\!=\\\\, 1/(2n) -{\\\\mathbb{P}}( I_n = k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a polynomial function of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline38.png\\\" /> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with the surprising symmetry <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline39.png\\\" /> <jats:tex-math> $\\\\delta _n( 2 n + 1 - k) = ({-}1)^n \\\\delta _n(k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is a combinatorial analog of the well-known symmetry of Bernoulli polynomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000421_inline40.png\\\" /> <jats:tex-math> $b_n(1-x) = ({-}1)^n b_n(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution
The factorially normalized Bernoulli polynomials $b_n(x) = B_n(x)/n!$ are known to be characterized by $b_0(x) = 1$ and $b_n(x)$ for $n \gt 0$ is the anti-derivative of $b_{n-1}(x)$ subject to $\int _0^1 b_n(x) dx = 0$ . We offer a related characterization: $b_1(x) = x - 1/2$ and $({-}1)^{n-1} b_n(x)$ for $n \gt 0$ is the $n$ -fold circular convolution of $b_1(x)$ with itself. Equivalently, $1 - 2^n b_n(x)$ is the probability density at $x \in (0,1)$ of the fractional part of a sum of $n$ independent random variables, each with the beta $(1,2)$ probability density $2(1-x)$ at $x \in (0,1)$ . This result has a novel combinatorial analog, the Bernoulli clock : mark the hours of a $2 n$ hour clock by a uniformly random permutation of the multiset $\{1,1, 2,2, \ldots, n,n\}$ , meaning pick two different hours uniformly at random from the $2 n$ hours and mark them $1$ , then pick two different hours uniformly at random from the remaining $2 n - 2$ hours and mark them $2$ , and so on. Starting from hour $0 = 2n$ , move clockwise to the first hour marked $1$ , continue clockwise to the first hour marked $2$ , and so on, continuing clockwise around the Bernoulli clock until the first of the two hours marked $n$ is encountered, at a random hour $I_n$ between $1$ and $2n$ . We show that for each positive integer $n$ , the event $( I_n = 1)$ has probability $(1 - 2^n b_n(0))/(2n)$ , where $n! b_n(0) = B_n(0)$ is the $n$ th Bernoulli number. For $ 1 \le k \le 2 n$ , the difference $\delta _n(k)\,:\!=\, 1/(2n) -{\mathbb{P}}( I_n = k)$ is a polynomial function of $k$ with the surprising symmetry $\delta _n( 2 n + 1 - k) = ({-}1)^n \delta _n(k)$ , which is a combinatorial analog of the well-known symmetry of Bernoulli polynomials $b_n(1-x) = ({-}1)^n b_n(x)$ .