Linjing Hao, Haoran Sang, Yuwei Hou, Peng Li, Jie Zhang, Jing-He Yang
{"title":"提高BiOCl纳米材料可见光光催化活性的研究进展","authors":"Linjing Hao, Haoran Sang, Yuwei Hou, Peng Li, Jie Zhang, Jing-He Yang","doi":"10.1515/revic-2023-0013","DOIUrl":null,"url":null,"abstract":"Photocatalysis is an effective way to alleviate the energy crisis and environmental pollution. Bismuth Chloride Oxide (BiOCl) is one of the most widely studied metal oxides due to its unique surface and electronic structure. However, the wide band gap of BiOCl and the high complexation rate of photogenerated electron–hole pairs limit its photocatalytic efficiency. Increasingly, efforts are being made to improve the performance of this range of photocatalysts. The article reviews the progress of research to enhance the photocatalytic activity of BiOCl nanomaterials. Strategies to improve the photocatalytic performance of single-phase BiOCl include morphological control, component adjustment, crystal facet control, and defects construction. Strategies to improve the photocatalytic activity of BiOCl-based composites include surface modification, immobilization of photocatalysts, impurity doping, and the construction of heterojunctions. In addition, the challenges and trends of BiOCl photocatalysts are discussed and summarized. Hopefully, this review will be helpful for the research and application of BiOCl photocatalysts.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in the improvement of photocatalytic activity of BiOCl nanomaterials under visible light\",\"authors\":\"Linjing Hao, Haoran Sang, Yuwei Hou, Peng Li, Jie Zhang, Jing-He Yang\",\"doi\":\"10.1515/revic-2023-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalysis is an effective way to alleviate the energy crisis and environmental pollution. Bismuth Chloride Oxide (BiOCl) is one of the most widely studied metal oxides due to its unique surface and electronic structure. However, the wide band gap of BiOCl and the high complexation rate of photogenerated electron–hole pairs limit its photocatalytic efficiency. Increasingly, efforts are being made to improve the performance of this range of photocatalysts. The article reviews the progress of research to enhance the photocatalytic activity of BiOCl nanomaterials. Strategies to improve the photocatalytic performance of single-phase BiOCl include morphological control, component adjustment, crystal facet control, and defects construction. Strategies to improve the photocatalytic activity of BiOCl-based composites include surface modification, immobilization of photocatalysts, impurity doping, and the construction of heterojunctions. In addition, the challenges and trends of BiOCl photocatalysts are discussed and summarized. Hopefully, this review will be helpful for the research and application of BiOCl photocatalysts.\",\"PeriodicalId\":21162,\"journal\":{\"name\":\"Reviews in Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revic-2023-0013\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revic-2023-0013","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Advances in the improvement of photocatalytic activity of BiOCl nanomaterials under visible light
Photocatalysis is an effective way to alleviate the energy crisis and environmental pollution. Bismuth Chloride Oxide (BiOCl) is one of the most widely studied metal oxides due to its unique surface and electronic structure. However, the wide band gap of BiOCl and the high complexation rate of photogenerated electron–hole pairs limit its photocatalytic efficiency. Increasingly, efforts are being made to improve the performance of this range of photocatalysts. The article reviews the progress of research to enhance the photocatalytic activity of BiOCl nanomaterials. Strategies to improve the photocatalytic performance of single-phase BiOCl include morphological control, component adjustment, crystal facet control, and defects construction. Strategies to improve the photocatalytic activity of BiOCl-based composites include surface modification, immobilization of photocatalysts, impurity doping, and the construction of heterojunctions. In addition, the challenges and trends of BiOCl photocatalysts are discussed and summarized. Hopefully, this review will be helpful for the research and application of BiOCl photocatalysts.
期刊介绍:
Reviews in Inorganic Chemistry (REVIC) is a quarterly, peer-reviewed journal that focuses on developments in inorganic chemistry. Technical reviews offer detailed synthesis protocols, reviews of methodology and descriptions of apparatus. Topics are treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are committed to high quality standards and rapid handling of the review and publication process. The journal publishes all aspects of solid-state, molecular and surface chemistry. Topics may be treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are commited to high quality standards and rapid handling of the review and publication process.
Topics:
-Main group chemistry-
Transition metal chemistry-
Coordination chemistry-
Organometallic chemistry-
Catalysis-
Bioinorganic chemistry-
Supramolecular chemistry-
Ionic liquids