D. H. Mac Manus, C. J. Rodger, A. Renton, J. Ronald, D. Harper, C. Taylor, M. Dalzell, T. Divett, M. A. Clilverd
{"title":"新西兰的地磁感应电流缓解:工业投入的操作缓解方法开发","authors":"D. H. Mac Manus, C. J. Rodger, A. Renton, J. Ronald, D. Harper, C. Taylor, M. Dalzell, T. Divett, M. A. Clilverd","doi":"10.1029/2023sw003533","DOIUrl":null,"url":null,"abstract":"Reducing the impact of Geomagnetically induced currents (GICs) on electrical power networks is an essential step to protect network assets and maintain reliable power transmission during and after storm events. In this study, multiple mitigation strategies are tested during worst-case extreme storm scenarios in order to investigate their effectiveness for the New Zealand transmission network. By working directly with our industry partners, Transpower New Zealand Ltd, a mitigation strategy in the form of targeted line disconnections has been developed. This mitigation strategy proved more effective than previous strategies at reducing GIC magnitudes and durations at transformers at most risk to GIC while still maintaining the continuous supply of power throughout New Zealand. Under this mitigation plan, the average 60-min mean GIC decreased for 27 of the top 30 at-risk transformers, and the total network GIC was reduced by 16%. This updated mitigation has been adopted as an operational procedure in the New Zealand national control room to manage GIC. In addition, simulations show that the installation of 14 capacitor blocking devices at specific transformers reduces the total GIC sum in the network by an additional 16%. As a result of this study Transpower is considering further mitigation in the form of capacitor blockers. We strongly recommend collaborating with the relevant power network providers to develop effective mitigation strategies that reduce GIC and have a minimal impact on power distribution.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"32 5 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geomagnetically Induced Current Mitigation in New Zealand: Operational Mitigation Method Development With Industry Input\",\"authors\":\"D. H. Mac Manus, C. J. Rodger, A. Renton, J. Ronald, D. Harper, C. Taylor, M. Dalzell, T. Divett, M. A. Clilverd\",\"doi\":\"10.1029/2023sw003533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing the impact of Geomagnetically induced currents (GICs) on electrical power networks is an essential step to protect network assets and maintain reliable power transmission during and after storm events. In this study, multiple mitigation strategies are tested during worst-case extreme storm scenarios in order to investigate their effectiveness for the New Zealand transmission network. By working directly with our industry partners, Transpower New Zealand Ltd, a mitigation strategy in the form of targeted line disconnections has been developed. This mitigation strategy proved more effective than previous strategies at reducing GIC magnitudes and durations at transformers at most risk to GIC while still maintaining the continuous supply of power throughout New Zealand. Under this mitigation plan, the average 60-min mean GIC decreased for 27 of the top 30 at-risk transformers, and the total network GIC was reduced by 16%. This updated mitigation has been adopted as an operational procedure in the New Zealand national control room to manage GIC. In addition, simulations show that the installation of 14 capacitor blocking devices at specific transformers reduces the total GIC sum in the network by an additional 16%. As a result of this study Transpower is considering further mitigation in the form of capacitor blockers. We strongly recommend collaborating with the relevant power network providers to develop effective mitigation strategies that reduce GIC and have a minimal impact on power distribution.\",\"PeriodicalId\":22181,\"journal\":{\"name\":\"Space Weather\",\"volume\":\"32 5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Weather\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023sw003533\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003533","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geomagnetically Induced Current Mitigation in New Zealand: Operational Mitigation Method Development With Industry Input
Reducing the impact of Geomagnetically induced currents (GICs) on electrical power networks is an essential step to protect network assets and maintain reliable power transmission during and after storm events. In this study, multiple mitigation strategies are tested during worst-case extreme storm scenarios in order to investigate their effectiveness for the New Zealand transmission network. By working directly with our industry partners, Transpower New Zealand Ltd, a mitigation strategy in the form of targeted line disconnections has been developed. This mitigation strategy proved more effective than previous strategies at reducing GIC magnitudes and durations at transformers at most risk to GIC while still maintaining the continuous supply of power throughout New Zealand. Under this mitigation plan, the average 60-min mean GIC decreased for 27 of the top 30 at-risk transformers, and the total network GIC was reduced by 16%. This updated mitigation has been adopted as an operational procedure in the New Zealand national control room to manage GIC. In addition, simulations show that the installation of 14 capacitor blocking devices at specific transformers reduces the total GIC sum in the network by an additional 16%. As a result of this study Transpower is considering further mitigation in the form of capacitor blockers. We strongly recommend collaborating with the relevant power network providers to develop effective mitigation strategies that reduce GIC and have a minimal impact on power distribution.