Abakus:用存储技术加速k-mer计数

IF 1.5 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Architecture and Code Optimization Pub Date : 2023-11-21 DOI:10.1145/3632952
Lingxi Wu, Minxuan Zhou, Weihong Xu, Ashish Venkat, Tajana Rosing, Kevin Skadron
{"title":"Abakus:用存储技术加速k-mer计数","authors":"Lingxi Wu, Minxuan Zhou, Weihong Xu, Ashish Venkat, Tajana Rosing, Kevin Skadron","doi":"10.1145/3632952","DOIUrl":null,"url":null,"abstract":"<p>This work seeks to leverage Processing-with-storage-technology (PWST) to accelerate a key bioinformatics kernel called <i>k</i>-mer counting, which involves processing large files of sequence data on the disk to build a histogram of fixed-size genome sequence substrings and thereby entails prohibitively high I/O overhead. In particular, this work proposes a set of accelerator designs called Abakus that offer varying degrees of tradeoffs in terms of performance, efficiency, and hardware implementation complexity. The key to these designs is a set of domain-specific hardware extensions to accelerate the key operations for <i>k</i>-mer counting at various levels of the SSD hierarchy, with the goal of enhancing the limited computing capabilities of conventional SSDs, while exploiting the parallelism of the multi-channel, multi-way SSDs. Our evaluation suggests that Abakus can achieve 8.42 ×, 6.91 ×, and 2.32 × speedup over the CPU-, GPU-, and near-data processing solutions.</p>","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"55 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abakus: Accelerating k-mer Counting With Storage Technology\",\"authors\":\"Lingxi Wu, Minxuan Zhou, Weihong Xu, Ashish Venkat, Tajana Rosing, Kevin Skadron\",\"doi\":\"10.1145/3632952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work seeks to leverage Processing-with-storage-technology (PWST) to accelerate a key bioinformatics kernel called <i>k</i>-mer counting, which involves processing large files of sequence data on the disk to build a histogram of fixed-size genome sequence substrings and thereby entails prohibitively high I/O overhead. In particular, this work proposes a set of accelerator designs called Abakus that offer varying degrees of tradeoffs in terms of performance, efficiency, and hardware implementation complexity. The key to these designs is a set of domain-specific hardware extensions to accelerate the key operations for <i>k</i>-mer counting at various levels of the SSD hierarchy, with the goal of enhancing the limited computing capabilities of conventional SSDs, while exploiting the parallelism of the multi-channel, multi-way SSDs. Our evaluation suggests that Abakus can achieve 8.42 ×, 6.91 ×, and 2.32 × speedup over the CPU-, GPU-, and near-data processing solutions.</p>\",\"PeriodicalId\":50920,\"journal\":{\"name\":\"ACM Transactions on Architecture and Code Optimization\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Architecture and Code Optimization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3632952\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3632952","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

这项工作旨在利用处理与存储技术(PWST)来加速一个关键的生物信息学内核,称为k-mer计数,它涉及处理磁盘上的大文件序列数据,以构建固定大小的基因组序列子串的直方图,因此需要极高的I/O开销。特别是,这项工作提出了一组称为Abakus的加速器设计,这些设计在性能、效率和硬件实现复杂性方面提供了不同程度的权衡。这些设计的关键是一组特定于领域的硬件扩展,以加速在SSD层次结构的各个级别上k-mer计数的关键操作,其目标是增强传统SSD有限的计算能力,同时利用多通道、多路SSD的并行性。我们的评估表明,与CPU、GPU和近数据处理解决方案相比,Abakus可以实现8.42倍、6.91倍和2.32倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abakus: Accelerating k-mer Counting With Storage Technology

This work seeks to leverage Processing-with-storage-technology (PWST) to accelerate a key bioinformatics kernel called k-mer counting, which involves processing large files of sequence data on the disk to build a histogram of fixed-size genome sequence substrings and thereby entails prohibitively high I/O overhead. In particular, this work proposes a set of accelerator designs called Abakus that offer varying degrees of tradeoffs in terms of performance, efficiency, and hardware implementation complexity. The key to these designs is a set of domain-specific hardware extensions to accelerate the key operations for k-mer counting at various levels of the SSD hierarchy, with the goal of enhancing the limited computing capabilities of conventional SSDs, while exploiting the parallelism of the multi-channel, multi-way SSDs. Our evaluation suggests that Abakus can achieve 8.42 ×, 6.91 ×, and 2.32 × speedup over the CPU-, GPU-, and near-data processing solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Architecture and Code Optimization
ACM Transactions on Architecture and Code Optimization 工程技术-计算机:理论方法
CiteScore
3.60
自引率
6.20%
发文量
78
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.
期刊最新文献
A Survey of General-purpose Polyhedral Compilers Sectored DRAM: A Practical Energy-Efficient and High-Performance Fine-Grained DRAM Architecture Scythe: A Low-latency RDMA-enabled Distributed Transaction System for Disaggregated Memory FASA-DRAM: Reducing DRAM Latency with Destructive Activation and Delayed Restoration CoolDC: A Cost-Effective Immersion-Cooled Datacenter with Workload-Aware Temperature Scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1