{"title":"gpu的回合制时空相干性","authors":"Sooraj Puthoor, Mikko H. Lipasti","doi":"https://dl.acm.org/doi/10.1145/3593054","DOIUrl":null,"url":null,"abstract":"<p>This article introduces turn-based spatiotemporal coherence. Spatiotemporal coherence is a novel coherence implementation that assigns write permission to epochs (or turns) as opposed to a processor core. This paradigm shift in the assignment of write permissions satisfies all conditions of a coherence protocol with virtually no coherence overhead. We discuss the implementation of this coherence mechanism on a baseline GPU. The evaluation shows that spatiotemporal coherence achieves a speedup of 7.13% for workloads with read data reuse across kernels compared to the baseline software-managed GPU coherence implementation while also providing write atomicity and avoiding the need for software inserted acquire-release operations.<sup>1</sup></p>","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turn-based Spatiotemporal Coherence for GPUs\",\"authors\":\"Sooraj Puthoor, Mikko H. Lipasti\",\"doi\":\"https://dl.acm.org/doi/10.1145/3593054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article introduces turn-based spatiotemporal coherence. Spatiotemporal coherence is a novel coherence implementation that assigns write permission to epochs (or turns) as opposed to a processor core. This paradigm shift in the assignment of write permissions satisfies all conditions of a coherence protocol with virtually no coherence overhead. We discuss the implementation of this coherence mechanism on a baseline GPU. The evaluation shows that spatiotemporal coherence achieves a speedup of 7.13% for workloads with read data reuse across kernels compared to the baseline software-managed GPU coherence implementation while also providing write atomicity and avoiding the need for software inserted acquire-release operations.<sup>1</sup></p>\",\"PeriodicalId\":50920,\"journal\":{\"name\":\"ACM Transactions on Architecture and Code Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Architecture and Code Optimization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3593054\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3593054","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
This article introduces turn-based spatiotemporal coherence. Spatiotemporal coherence is a novel coherence implementation that assigns write permission to epochs (or turns) as opposed to a processor core. This paradigm shift in the assignment of write permissions satisfies all conditions of a coherence protocol with virtually no coherence overhead. We discuss the implementation of this coherence mechanism on a baseline GPU. The evaluation shows that spatiotemporal coherence achieves a speedup of 7.13% for workloads with read data reuse across kernels compared to the baseline software-managed GPU coherence implementation while also providing write atomicity and avoiding the need for software inserted acquire-release operations.1
期刊介绍:
ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.