基于同中子数核素链的核质量新关系式

IF 1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR International Journal of Modern Physics E Pub Date : 2023-01-11 DOI:10.1142/s0218301322500999
Xiao-Liang Liu, Bao-Bao Jiao, Xiang-Ting Meng
{"title":"基于同中子数核素链的核质量新关系式","authors":"Xiao-Liang Liu, Bao-Bao Jiao, Xiang-Ting Meng","doi":"10.1142/s0218301322500999","DOIUrl":null,"url":null,"abstract":"<p>There are many studies in Odd–Even staggering (OES) of nuclear masses, but the research on nuclear masses by using the systematicness of OES is indeed very few. In this work, we analyze the relationship among the four neighboring nuclei based on the OES of nuclide chain with the same number of neutrons in atomic mass evaluation database (AME2016 database). Our purpose in this paper is to describe an empirical formula with one constant for OES of nuclear masses that can be useful in describing and predicting nuclear masses with mass number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span>. With the empirical formula and AME2016 database, the root-mean-square deviation (RMSD) of the nuclei that we have successfully obtained 172<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>keV for <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span> (the RMSD is 140<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>keV for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>5</mn><mn>8</mn></math></span><span></span>). This paper also uses Levenberg–Marquart (L-M) neural network approach to study the OES of nuclear masses (<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span>, RMSD <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo>≃</mo><mn>1</mn><mn>4</mn><mn>3</mn></math></span><span></span><span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>keV; <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>5</mn><mn>8</mn></math></span><span></span>, RMSD <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mo>≃</mo><mn>1</mn><mn>1</mn><mn>9</mn></math></span><span></span><span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>keV). The results show that the RMSD of nuclear masses for <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span> based on neural network approach 30<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>keV decreases than that based on empirical formula (the accuracy is increased by about 17%). In addition, the predicted values based on the empirical formula and L-M neural network approach are consistent with the values in AME2020 database, and the difference between our predicted values based on AME2016 database and experimental values measured in recent years is small. These results show that the new relation for nuclear masses has good simplicity, accuracy and reliability. Accurate nuclear mass is helpful to the research of nuclear physics, nuclear technology and astrophysics.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"18 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new relation for nuclear masses based on the nuclide chain with the same number of neutrons\",\"authors\":\"Xiao-Liang Liu, Bao-Bao Jiao, Xiang-Ting Meng\",\"doi\":\"10.1142/s0218301322500999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There are many studies in Odd–Even staggering (OES) of nuclear masses, but the research on nuclear masses by using the systematicness of OES is indeed very few. In this work, we analyze the relationship among the four neighboring nuclei based on the OES of nuclide chain with the same number of neutrons in atomic mass evaluation database (AME2016 database). Our purpose in this paper is to describe an empirical formula with one constant for OES of nuclear masses that can be useful in describing and predicting nuclear masses with mass number <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span>. With the empirical formula and AME2016 database, the root-mean-square deviation (RMSD) of the nuclei that we have successfully obtained 172<span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>keV for <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span> (the RMSD is 140<span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>keV for <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>5</mn><mn>8</mn></math></span><span></span>). This paper also uses Levenberg–Marquart (L-M) neural network approach to study the OES of nuclear masses (<span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span>, RMSD <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>≃</mo><mn>1</mn><mn>4</mn><mn>3</mn></math></span><span></span><span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>keV; <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>5</mn><mn>8</mn></math></span><span></span>, RMSD <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>≃</mo><mn>1</mn><mn>1</mn><mn>9</mn></math></span><span></span><span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>keV). The results show that the RMSD of nuclear masses for <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span> based on neural network approach 30<span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>keV decreases than that based on empirical formula (the accuracy is increased by about 17%). In addition, the predicted values based on the empirical formula and L-M neural network approach are consistent with the values in AME2020 database, and the difference between our predicted values based on AME2016 database and experimental values measured in recent years is small. These results show that the new relation for nuclear masses has good simplicity, accuracy and reliability. Accurate nuclear mass is helpful to the research of nuclear physics, nuclear technology and astrophysics.</p>\",\"PeriodicalId\":50306,\"journal\":{\"name\":\"International Journal of Modern Physics E\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218301322500999\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0218301322500999","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

关于核质量奇偶交错(OES)的研究很多,但利用OES的系统性对核质量的研究确实很少。本文基于原子质量评价数据库(AME2016)中中子数相同的核素链OES,分析了相邻4个原子核之间的关系。本文的目的是描述一个具有一个常数的核质量OES经验公式,该公式可用于描述和预测质量数A≥100的核质量。利用经验公式和AME2016数据库,我们成功得到了A≥100时原子核的均方根偏差(RMSD)为172keV (A≥158时RMSD为140keV)。本文还采用Levenberg-Marquart (L-M)神经网络方法研究核质量(A≥100,RMSD≤143keV;A≥158,RMSD≃119keV)。结果表明,基于神经网络逼近30keV的A≥100核质量的RMSD比基于经验公式的RMSD减小(精度提高约17%)。此外,基于经验公式和L-M神经网络方法的预测值与AME2020数据库的预测值一致,而基于AME2016数据库的预测值与近年来实测的实验值差异较小。结果表明,新的核质量关系式具有较好的简洁性、准确性和可靠性。准确的核质量有助于核物理、核技术和天体物理学的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new relation for nuclear masses based on the nuclide chain with the same number of neutrons

There are many studies in Odd–Even staggering (OES) of nuclear masses, but the research on nuclear masses by using the systematicness of OES is indeed very few. In this work, we analyze the relationship among the four neighboring nuclei based on the OES of nuclide chain with the same number of neutrons in atomic mass evaluation database (AME2016 database). Our purpose in this paper is to describe an empirical formula with one constant for OES of nuclear masses that can be useful in describing and predicting nuclear masses with mass number A100. With the empirical formula and AME2016 database, the root-mean-square deviation (RMSD) of the nuclei that we have successfully obtained 172keV for A100 (the RMSD is 140keV for A158). This paper also uses Levenberg–Marquart (L-M) neural network approach to study the OES of nuclear masses (A100, RMSD 143keV; A158, RMSD 119keV). The results show that the RMSD of nuclear masses for A100 based on neural network approach 30keV decreases than that based on empirical formula (the accuracy is increased by about 17%). In addition, the predicted values based on the empirical formula and L-M neural network approach are consistent with the values in AME2020 database, and the difference between our predicted values based on AME2016 database and experimental values measured in recent years is small. These results show that the new relation for nuclear masses has good simplicity, accuracy and reliability. Accurate nuclear mass is helpful to the research of nuclear physics, nuclear technology and astrophysics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics E
International Journal of Modern Physics E 物理-物理:核物理
CiteScore
1.90
自引率
18.20%
发文量
98
审稿时长
4-8 weeks
期刊介绍: This journal covers the topics on experimental and theoretical nuclear physics, and its applications and interface with astrophysics and particle physics. The journal publishes research articles as well as review articles on topics of current interest.
期刊最新文献
Machine learning nuclear orbital-free density functional based on Thomas–Fermi approach Multiplicity correlation of fast target protons and projectile fragments for the events produced in the interaction of 84Kr nuclei with emulsion nuclei at 1 A GeV Pseudospin symmetry in resonant states in deformed nucleus 154Dy Properties of the 7He ground state studied by the 6He(d,p)7He reaction Fraction constraint in partial wave analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1