{"title":"澳大利亚四个城市的大季节性和昼夜人为热通量","authors":"S. Chapman, J.E.M. Watson, C.A. McAlpine","doi":"10.1071/es16022","DOIUrl":null,"url":null,"abstract":"Anthropogenic heat release is a key component of the urban heat island. However, it is often excluded from studies of the urban heat island because reliable estimates are not available. This omission is important because anthropogenic heat can contribute up to 4ºC to the urban heat island, and increases heat stress to urban residents. The exclusion of anthropogenic heat means the urban heat island effect on temperatures may be under-estimated. Here we estimate anthropogenic heat for four Australian capital cities (Brisbane, Sydney, Melbourne and Adelaide) to inform the management of the urban heat island in a changing climate. Anthropogenic heat release was calculated using 2011 population census data and an inventory of hourly traffic volume, building electricity and gas use. Melbourne had the highest annual daily average anthropogenic heat emissions, which reached 376 W/m2in the city centre during the daytime, while Brisbane’s emissions were 261 W/m2 and Sydney’s were 256W/m2. Adelaide had the lowest emissions, with a daily average of 39 W/m2 in the city centre. Emissions varied within and among the four cities and decreased rapidly with distance from the city centre, to 2 at 20 km from the city in Brisbane, and 15 km in Adelaide. The highest emissions were found in the city centres during working hours. The peak emissions reached in the centre of Melbourne are similar to the peak emissions in London and Tokyo, where anthropogenic heat is a large component of the urban heat island. This indicates that anthropogenic heat could be an important contributor to the urban heat island in Australian capital cities, and needs to be considered in climate adaptation studies. This is an important problem because climate change, combined with an ageing population and urban growth, could double the deaths from heatwaves in Australian cities over the next 40 years.","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"167 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large seasonal and diurnal anthropogenic heat flux across four Australian cities\",\"authors\":\"S. Chapman, J.E.M. Watson, C.A. McAlpine\",\"doi\":\"10.1071/es16022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anthropogenic heat release is a key component of the urban heat island. However, it is often excluded from studies of the urban heat island because reliable estimates are not available. This omission is important because anthropogenic heat can contribute up to 4ºC to the urban heat island, and increases heat stress to urban residents. The exclusion of anthropogenic heat means the urban heat island effect on temperatures may be under-estimated. Here we estimate anthropogenic heat for four Australian capital cities (Brisbane, Sydney, Melbourne and Adelaide) to inform the management of the urban heat island in a changing climate. Anthropogenic heat release was calculated using 2011 population census data and an inventory of hourly traffic volume, building electricity and gas use. Melbourne had the highest annual daily average anthropogenic heat emissions, which reached 376 W/m2in the city centre during the daytime, while Brisbane’s emissions were 261 W/m2 and Sydney’s were 256W/m2. Adelaide had the lowest emissions, with a daily average of 39 W/m2 in the city centre. Emissions varied within and among the four cities and decreased rapidly with distance from the city centre, to 2 at 20 km from the city in Brisbane, and 15 km in Adelaide. The highest emissions were found in the city centres during working hours. The peak emissions reached in the centre of Melbourne are similar to the peak emissions in London and Tokyo, where anthropogenic heat is a large component of the urban heat island. This indicates that anthropogenic heat could be an important contributor to the urban heat island in Australian capital cities, and needs to be considered in climate adaptation studies. This is an important problem because climate change, combined with an ageing population and urban growth, could double the deaths from heatwaves in Australian cities over the next 40 years.\",\"PeriodicalId\":55419,\"journal\":{\"name\":\"Journal of Southern Hemisphere Earth Systems Science\",\"volume\":\"167 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Southern Hemisphere Earth Systems Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1071/es16022\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Southern Hemisphere Earth Systems Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1071/es16022","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Large seasonal and diurnal anthropogenic heat flux across four Australian cities
Anthropogenic heat release is a key component of the urban heat island. However, it is often excluded from studies of the urban heat island because reliable estimates are not available. This omission is important because anthropogenic heat can contribute up to 4ºC to the urban heat island, and increases heat stress to urban residents. The exclusion of anthropogenic heat means the urban heat island effect on temperatures may be under-estimated. Here we estimate anthropogenic heat for four Australian capital cities (Brisbane, Sydney, Melbourne and Adelaide) to inform the management of the urban heat island in a changing climate. Anthropogenic heat release was calculated using 2011 population census data and an inventory of hourly traffic volume, building electricity and gas use. Melbourne had the highest annual daily average anthropogenic heat emissions, which reached 376 W/m2in the city centre during the daytime, while Brisbane’s emissions were 261 W/m2 and Sydney’s were 256W/m2. Adelaide had the lowest emissions, with a daily average of 39 W/m2 in the city centre. Emissions varied within and among the four cities and decreased rapidly with distance from the city centre, to 2 at 20 km from the city in Brisbane, and 15 km in Adelaide. The highest emissions were found in the city centres during working hours. The peak emissions reached in the centre of Melbourne are similar to the peak emissions in London and Tokyo, where anthropogenic heat is a large component of the urban heat island. This indicates that anthropogenic heat could be an important contributor to the urban heat island in Australian capital cities, and needs to be considered in climate adaptation studies. This is an important problem because climate change, combined with an ageing population and urban growth, could double the deaths from heatwaves in Australian cities over the next 40 years.
期刊介绍:
The Journal of Southern Hemisphere Earth Systems Science (JSHESS) publishes broad areas of research with a distinct emphasis on the Southern Hemisphere. The scope of the Journal encompasses the study of the mean state, variability and change of the atmosphere, oceans, and land surface, including the cryosphere, from hemispheric to regional scales.
general circulation of the atmosphere and oceans,
climate change and variability ,
climate impacts,
climate modelling ,
past change in the climate system including palaeoclimate variability,
atmospheric dynamics,
synoptic meteorology,
mesoscale meteorology and severe weather,
tropical meteorology,
observation systems,
remote sensing of atmospheric, oceanic and land surface processes,
weather, climate and ocean prediction,
atmospheric and oceanic composition and chemistry,
physical oceanography,
air‐sea interactions,
coastal zone processes,
hydrology,
cryosphere‐atmosphere interactions,
land surface‐atmosphere interactions,
space weather, including impacts and mitigation on technology,
ionospheric, magnetospheric, auroral and space physics,
data assimilation applied to the above subject areas .
Authors are encouraged to contact the Editor for specific advice on whether the subject matter of a proposed submission is appropriate for the Journal of Southern Hemisphere Earth Systems Science.